
Imaginary elements in geometry

according to Felix Klein

In this part we will use uppercase letters for points as well as for planes. Lowercase ones
indicate lines or variable elements (which can be points as well as lines as well as planes).
Greek letters denote (real or imaginary) numbers.

1 The space over the reals

Let S be the 3-dimensional projective space over the real numbers. Let S0 be the set of its
points, S1 the set of lines and S2 the set of planes. We add two extra elements to S, viz.
the empty set ; and the whole space P = P3 as an entity; for each other element x holds
; � x � P. Now by definition

S = {;} [ S0 [ S1 [ S2 [ {P}

We say that the dimension of ; is �1, that of a point 0, that of a line 1, that of a plane 2 and
that of the entire space 3. An open interval ha, bi of S is the set of elements between a and b:

ha, bi = {x 2 S|a � x � b}

In particular, if P is a point, l a line and A a plane with P � l � A, we have
h;, li is the collection of points on l,
h;, Ai is the field of points and lines in A,
- h;, Ai0 = h;, Ai \ S0 is the field of points in A,
- h;, Ai1 = h;, Ai \ S1 is the field of lines in A,
h;,Pi = S0 [ S1 [ S2,
hP,Ai is the pencil of lines in A through P ,
hP,Pi is the bundle of lines and planes through P ,
- hP,Pi1 = hP,Pi \ S1 is the bundle of lines through P ,
- hP,Pi2 = hP,Pi \ S2 is the bundle of planes through P ,
hl,Pi is the pencil of planes through l.

We will no longer use the name of a line for the collection of points on it, nor use the name
of a point for the set of lines through it; but we’ll use the proper open interval. We will
abbreviate f : hx, yi ! hx, yi by fhx,yi. But if P,Q,R are distinct points on a line fPQR will
still mean the Klein-map defined by these points, and dually if A,B,C are distinct planes
through one line, fABC will mean the Klein-map defined by these planes.

2 Low imaginary elements

We are going to define imaginary elements of S. This depends heavily on what is called
‘line geometry’, which is about lines in 3-space, ruled surfaces (especially the hyperboloid)
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and – above all – linear congruences. For more information on line geometry see for instance
[Ziegler2012] or the oldies [Staudt1847] and [Reye1899].

As before, an imaginary point is a projective map P = Ph;,li with the properties l 2 S1,
P 6= 1h;,li and P

3 = 1h;,li. The collection of imaginary points is T0. Dually, an imaginary
plane is a projective map A = Ahl,Pi with the properties l 2 S1, A 6= 1hl,Pi and A

3 = 1hl,Pi.
The collection of imaginary planes is T2.

A low imaginary line (or a line of type I ) is a projective map l = lhP,Ai with the properties
P 2 S0, A 2 S2, P � A, l 6= 1hP,Ai and l

3 = 1hP,Ai. The collection of low imaginary lines is
Ti. If l, l

0 and l
00 are concurrent lines in a plane, then fll0l00 is the low imanigary line defined

by them.

3 The high imaginary line

From 2-dimensional geometry we know that any two distinct points in the plane determine
one connecting line. In particular two imaginary points in the plane, Ph;,li and Qh;,mi with
l 6= m, determine one imaginary line, viz a low one. But if the two lines are in 3-space and
skew, the construction of that joining line (see last part of the proof of proposition ??) is no
longer possible. This situation leads to a new type of lines, the high imaginary ones.

Recall that a hyperboloid H is a quadratic surface containing two pencils of lines, Ha (or Hred
or Hright) and Hb ( = Hblue = Hleft; Von Staudt called them Regelschaar and Leitschaar).
Each line of the first pencil meets every line of the second and vice versa. Each pair of distinct
lines from one pencil is skew. The join of two distinct meeting lines l,m 2 H is a tangent
plane of it. Each line of the pencil hl^m, l_mi is a tangent of H, l and m being very special
tangents.
So, given Ha and Hb, a precise definition of H would be H = H0[H1[H2 with H1 = Ha[Hb,
H0 = {l ^m|l 2 Ha, m 2 Hb} and H2 = {l _m|l 2 Ha, m 2 Hb}.

Let l, l0, l00 be pairwise skew lines. We are going to define a projective map f = fll0l00 that moves
l to l0, l0 to l00 and l

00 to l, and as always f 3 = 1. It will appear that f can be defined in all points,
lines and planes in a natural way. First we observe that l, l0, l00 define a unique hyperboloid
H. Let Ha (the red lines in figure 1) be its pencil containing l, l

0 and l
00 and let u be any line

of the other pencil, Hb (the blue lines). Define points P = l ^ u, P
0 = l

0
^ u, P

00 = l
00
^ u and

planes A = l_u, A
0 = l

0
_u, A

00 = l
00
_u. The points define a Klein-map fh;,ui and the planes

define another one fhu,Pi. These maps we define to be the restictions of f to the points and
planes of u. So, for all lines of Hb, we defined the restrictions of f to the respective points an
planes. Observe that the lines of Hb themselves are invariant under f .

From the main theorem of projective geometry1 now follows that there is a unique projective
map that extends our f to the entire space. This can be seen as follows. Take any three lines
a1, a2, a3 2 Ha and any three lines b1, b2, b3 2 Hb. These lines meet in 9 distinct points Xij =
ai ^ bj of H. These points are of course not in general position, but X11, X12, X22, X23, X33

1 In three dimensions this is: given 5 points Pi in general position, and another five Qi in general position,
then there is exactly one projective map that maps Pi on Qi for all i.
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Figure 1: construction of a high imaginary line

are, see figure 2. And so are their images under f . Thus from the main theorem we know
that f has a unique extension.

Figure 2: five points in general position

Now take any point X not on H. We are going to construct f(X). Take two distinct lines
u, v from Hb. The plane X _ v meets u in a point Y , so XY is the transversal of u, v through
X. Let Z be the meeting point of XY and v. Since u, v 2 Hb, f is defined on both. Let
Y

0 = f(Y ), Y
00 = f(Y 0), Z

0 = f(Z), Z
00 = f(Z 0). The lines Y Z, Y

0
Z

0 and Y
00
Z

00 determine
a second hyperboloid L, viz. a pencil La of lines. Let Lb be the corresponding second pencil
and let x 2 Lb be the line throug X. Define X

0 = Y
0
Z

0
^ x and X

00 = Y
00
Z

00
^ x and let

fh;,xi = fXX0X00 . Thus we found the image under f of each point of space. The line x itself is
again invariant under f .

In a similar way we can construct the image of a plane that is not in H2. And the image of
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an arbitrary line n is the join of the images of any two distinct points on n, or the meet of
the images of any two distinct planes containing n.

Obviously there are no invariant real points nor planes. But the lines of Hb and Lb are
invariant. And since X was an arbitrary point, each real point (dually: each real plane) is
on (dually: contains) one invariant line of f . The invariant real lines form an elliptic2 linear
congruence C. If a line m does not belong to C, i.e. f(m) 6= m, then the lines of C that meet
m form a pencil Lb of a hyperboloid L, and the lines m, f(m) and f

2(m) belong to its pencil
La.

Definition 3.1 A high imaginary line (or a line of type II) is a non-trivial projective map
f : S ! S with the following properties:
- f 3 = 1
- f has no invariant real points, nor planes
- the invariant real lines of f form an elliptic linear congruence.

As a consequence we have the following properties:
- If P is an arbitrary real point, then P, f(P ) and f

2(P ) are on a line of the congruence.
- If A is an arbitrary real plane, then A, f(A) and f

2(A) share a line of the congruence.
- if l is an arbitrary real line, then either l belongs to the congruence, or l, f(l) and f

2(l)
generate one pencil of lines of a hyperboloid, and the other pencil of this hyperboloid belongs
to the congruence.

It is not so easy to get an image of the elliptic linear congruence. In section ?? of the appendix
we provide some pictures that may help, and section ?? gives an alternative way to look at
it.

The main reason that we introduced the high imaginary line was to extend the join-operator
_ to a pair of imaginary points on skew lines and to extend the meet-operator ^ to imaginary
planes on skew lines. That we succeded will be shown in proposition 6.2.

4 The matrix of a high imaginary line

Let again be givven three pairwise skew lines l, l0, l00, and three distinct lines m,m
0
,m

00. Each
of the second triple meets each of the first triple, see figure 3. Define X0 = l ^ m, X1 =
l^m

00
, X2 = l

00
^m

00
, X3 = l

00
^m and U = l

0
^m

0. Take these points as a system of reference
in the usual way. Observe that plane X0X1U [0 : 0 : 1 : �1] meets line X2X3 in T (0 : 0 : 1 : 1)
and that UT ^ X0X1 = S(1 : 1 : 0 : 0). Finally we have V = l

0
^ m = (1 : 0 : 0 : 1) and

W = l
0
^m

00 = (0 : 1 : 1 : 0). If f is again the Klein-map that moves l to l
0, l0 to l

00 and that
leaves m,m

0 and m
00 invariant, then it is easy to find that its matrix equals

0

BB@

1 0 0 �1
0 1 �1 0
0 1 0 0
1 0 0 0

1

CCA

2 There are also parabolic and hyperbolic linear congruences.
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Figure 3: the matrix of a high imaginary line

The characteristic equation of f is (�2
� �+ 1)2 = 0 and the eigenvalues are (1± i

p
3)/2.

Now consider the change of basis

M =
1

2

0

BB@

�1 + i
p
3 0 0 2

�
p
3� i 0 0 2i
0 �1 + i

p
3 2 0

0 �
p
3� i 2i 0

1

CCA

and the matrix g =

1

2

0

BB@

1 �
p
3

p
3 1

1 �
p
3

p
3 1

1

CCA =

0

BB@

cos ⇡
3 � sin ⇡

3
sin ⇡

3 cos ⇡
3

cos ⇡
3 � sin ⇡

3
sin ⇡

3 cos ⇡
3

1

CCA

Verify that Mf = gM , hence MfM
�1 = g. That is, the matrices f and g are similar,

which implies – among other things – that they have the same eigenspace structure. We will
investigate g in more detail in section ??.

5 The real and imaginary parts

Let the collection of high imaginary lines be Tii, and the collection of all imaginary lines be
T1. Hence T1 = Ti [ Tii. Let the collection of all imaginary elements be

T = T0 [ T1 [ T2
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Thus a new space, the complex 3-dimensional projective space, is defined as the set U = S[T .
The elements of S are called real, those of T imaginary. If f 2 T then f

2 = f
�1 is called the

conjugate of f . Complex conjugation is also defined on S, but equals the identity there.

The sets T0, T2, Ti, Tii are pairwise disjoint, and also S and T are disjoint. This implies that
the equality relation (=) is well-defined in the new space.

Another drawback of our new theory is the fact that so far, imaginary elements were maps of
1-dimensional intervals: an imaginary point is a map of points on a line, an imaginary plane
is a map of planes around a line, a low imaginary line is a map of lines around a point in a
plane. But a high imaginary line is a map of the entire projective 3-space, not even one of a
2-dimensional interval.
This is hardly compatible with the homogeneity of projective spaces from a synthetic point
of view.

How many imaginary elements are there? As we know, 3-dimensional real projective space has
1

3 points, 14 lines and 1
3 planes. How are these numbers in the new complex space? Each

real line contains 1
2 imaginary points, so the whole space contains 1

6 imaginary points.
Together with the real points there are 1

6 points in U . The same numbers hold for planes.

There are 1
3 real planes in space, each containing 1

2 real points. That gives 1
5 distinct

pencils. Each pencil contains 12 imaginary lines. So the total number of low imaginary lines
is 17. Thake two distinct planes in space. Each line that is not in one or both of them, meets
each of these planes in a point. Each plane has 14 points, so there are 18 of these lines. The
lines in the planes add up to 1

4 +1
4
� 1 so the total number of lines in space is 18. Since

there are ‘only’ 14 real and 1
7 low imaginary lines, there must be 18 high imaginary ones.

Space Points Lines I II Planes

3-d
S 1

3
1

4 0 1
3

T ,U 1
6

1
7

1
8

1
6

2-d
S 1

2
1

2

T ,U 1
4

1
4

1-d
S 1

1

T ,U 1
2

6 Incidence

We are going to extend the ordering relation � (�) to our new space. We have to make sure
that in each real plane the 2-dimensional relations – as defined in ?? – hold. These are:

1 The imaginary point Ph;,li lies on its real base line l. It is on no other real line in space.
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2 A low imaginary line lhP,Ai (where necessarily point P is in plane A) is said to go through
its real base point P and to lie in its base plane A. It has no other real points nor planes.

3 The imaginary point Ph;,li is on the low imaginary line mhQ,Ai i↵3:
- Q 6� l � A, and
- 8X 2 h;, li : P (X) _Q = m(X _Q) or 8x 2 hQ,Ai : P (x ^ l) = m(x) ^ l.

In addition we want the dual statements to hold in space (the second one is selfdual):

1* The imaginary plane Ahl,Pi contains its real base line l. It contains no other real line in
space.

3* The imaginary plane Ahl,Pi contains the low imaginary line mhP,Bi i↵:
- P � l 6� B and
- 8X 2 hl,Pi : A(X) ^ B = m(X ^ B) or 8x 2 hP,Bi : m(x) _ l = A(x _ l).

And of course we want to keep the fundamental rules: two distinct points have one line that
connects them, and two distinct planes have one common line, etc. That leads to the following
extension of �.

Definition 6.1 of �

1=11* real point in real line: done

2=13* real point P in low im. line lhQ,Ai: i↵ P = Q

3=15* real point P in high im. line lh;,Pi: never

4=4* real point in real plane: done

5=9* real point P in im. plane Ahl,Pi: i↵ P � l

6=12* im. point Ph;,li in real line m: i↵ l = m

7=14* im. point Ph;,li in low im. line mhQ,Ai
i↵ Q 6� l � A and
((8X 2 h;, li : m(X _Q) = P (X) _Q) or
(8x 2 hQ,Ai : m(x) ^ l = P (x ^ l)) (~)

8=16* im. point Ph;,li in high im. line mh;,Pi:
i↵ 8X 2 h;, li : P (X) = m(X)

9=5* im. point Ph;,li in real plane A: i↵ l � A

3‘i↵’ means ‘if and only if’
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10=10* im. point Ph;,li in im. plane Ahm,Pi
i↵ l = m or (l,m are skew and
(8X 2 h;, li : P (X) _m = A(X _m)) or
(8Y 2 hm,Pi : A(Y ) ^ l = P (Y ^ l))) (~)
(see left part of figure 4)

11=1* real line in real plane: done

12=6* real line l in im. plane Ahm,Pi: i↵ l = m

13=2* low im. line lhP,Ai in real plane B: i↵ A = B

14=7* low im. line lhP,Ai in im. plane Bhm,Pi
i↵ P � m 6� A and
(8X 2 hm,Pi : l(X ^ A) = B(X) ^ A or
8x 2 hP,Ai : B(x _m) = l(x) _m)) (~)
(see right part of figure 4)

15=3* high im. line lh;,Pi in real plane: never

16=8* high im. line lh;,Pi in im. plane Ahm,Pi
i↵ 8X 2 hm,Pi : l(X) = A(X)

In addition we define of course ; � f � P for each imaginary element f . There are no other
cases of x � y. ⇧

In the first column the cases and their duals are listed. Observe that in cases 8 and 16 the
condition implies m(l) = l resp. l(m) = m, i.e. the line l resp. m belongs to the linear
congruence. In the cases marked with (~) the last two conditions are equivalent. With these

Figure 4: incidence in the Klein-space

definitions we can now prove the main raison d’être of the high imaginary line:
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Proposition 6.2 If m,n are skew lines, P, P 0
, P

00 distinct points on m and Q,Q
0
, Q

00 distinct
points on n, there is a unique high-imaginary line that joins the points SPP 0P 00 and TQQ0Q00.
Dually: if m,n are skew lines, A,A

0
, A

00 distinct planes through m and B,B
0
, B

00 distinct
planes through n, there is a unique high-imaginary line that is contained in both CAA0A00 and
DBB0B00.

Proof. Define l = PQ, l0 = P 0Q0 and l00 = P 00Q00. Suppose l, l0 are in a real plane. Then also
P,Q, P 0 and Q0. But then m and n are in that plane, against hypothesis. In the same way we see
that l, l00 are skew and likewise l0, l00. Then, by the construction of the linear congruence, there is a
unique high imaginary line h that extends S and T . Hence, by part 8 of definition 6.1: S � h and
T � h. ⇧

7 The ordering properties

Observe that in the definition of x � y the dimension of x is always smaller than that of y.
So, x � y implies y 6� x.

If we define ‘x � y’ as ‘x � y or x = y’, we immediately have:
- x � x for all x (reflexivity) and
- x � y and y � x implies x = y (anti symmetry).

Proposition 7.1 The relation � (and hence �) is transitive, i.e. from x � y and y � z

follows x � z.

Proof. We only have to prove this for the case P � l, l � A with P a point, l a line and A a plane.

1. All real: done.

2. P, l real and Ahm,Pi imaginary. From l � A follows with part 12 of definition 6.1 that l = m,
hence P � m hence – with part 5 – P � A.

3. P,A real and lhQ,Bi imaginary. Because l is low imaginary we have Q � B. From P � l follows
with part 2 that P = Q and from l � A with part 13 that A = B. Then P = Q � B = A.

4. P,A real and l high imaginary is an impossible case.

5. l, A real and Ph;,mi imaginary. Because P � l we have with part 6 that l = m and hence with
part 9 that P � A.

6. P real, lhQ,Bi and Ahm,Pi imaginary. From P � l follows with part 2 that P = Q and from l � A
with part 14 that Q � m. Hence P � m and – by part 5 – P � A.

7. P real, l high and Ahm,Pi low imaginary is again impossible.

8. l real, Ph;,mi and Ahn,Pi imaginary. From P � l follows with part 6 that l = m and from l � A
with part 12 that n = l. Hence m = n and from part 10 we infere that P � A.

9. A real, Ph;,mi and lhQ,Bi imaginary. From p � l follows with part 7 that m � B and from l � A
with 13 that A = B. Hence m � A. Then from part 9 follows p � A.

10. A real, Ph;,mi imaginary and l high imaginary is impossible.
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11. Ph;,mi, lhQ,Bi, Ahn,Pi imaginary. From P � l follows with part 7 that Q 6� m � B and P (X)_Q =
l(X_Q) for all X on m. From l � A follows with part 14 that Q � n 6� B and A(y_n) = l(y)_n for
all y 2 hQ,Bi. Then necessarily l,m are skew. Let X be an arbitrary point of m and let y = X _Q.
Then P (X)_ n = P (X)_Q_ n = l(X _Q)_ n = l(y)_ n = A(y _ n) = A(X _Q_ n) = A(X _ n).
Hence with part 10: P � A. See also left part of figure 4.

12. Ph;,mi, Ahn,Pi low and l high imaginary. From P � l follows with part 8 that P (X) = l(X)
for all X on m, and also that l(m) = m. From l � A follows with part 16 that A(Z) = l(Z)
for all Z containing n, and also that l(n) = n. Since l is a projective map, it respects the join:
l(x _ y) = l(x) _ l(y). Now let X be an arbitrary point of m and let Z = X _ n. Then A(X _ n) =
A(Z) = l(Z) = l(X _ n) = l(X) _ l(n) = l(X) _ n = P (X) _ n. From this follows with part 10 that
P � A. ⇧

8 Check of the axioms

We will check if the space defined so far, satisfies the axioms of projective geometry. We will
do this using the axioms of [Boer2009]:

Definition 8.1 A projective space is a quadruple (S, n, dim,�) in which S is a set, n � 3
is an integer, dim : S ! {�1, 0 . . . n} is a surjective function, and � is a binary relation on
S, satisfying

1 the axiom of order:
- x � x

- ( x � y and y � x ) ) x = y

- ( x � y and y � z ) ) x � z

2 the axiom of monotone dimension:
for every x, y 2 S we have x � y ) dim(x)  dim(y)

3 the axiom of border:

- there is an element 0 such that for every x 2 S : 0 � x

- there is an element 1 such that for every x 2 S : 1 ⌫ x

4 the Lattice axiom:
- each pair of elements of S has a least upper bound (lub, join, _)
- each pair of elements of S has a greatest lower bound (glb, meet, ^)

5 the axiom of su�cient points/hyperplanes:
- for every pair a, b of elements of S for which a � b, there exists a point4 x such that
x 6� a and x � b

- for every pair a, b of elements of S for which a � b, there exists a hyperplane y such
that a � y and b 6� y

4 A point is an element of dimension 0, a line has dimension 1, a dual line has dimension n � 2 and a
hyperplane n� 1.
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6 the axiom of composition:
- if x is a point and a any element not containing x, then

dim(a _ x) = dim(a) + 1

- if y is a hyperplane and b any element not in y, then

dim(b ^ y) = dim(b)� 1

7 the axiom of cardinality:
- every line has at least three points on it
- every dual line is contained in at least three hyperplanes

In addition, 1- and 2-dimensional closed intervals of higher dimensional projective spaces, are
called projective spaces as well.

With these axioms we can derive by synthetic means a vector space V over some division ring
(skew field) F and it appears that each projective space is isomorphic to V

n+1
/ ⇠ for some

positive n 2 Z. Then an extra axiom states which ring is taken5. In our case it will be C.

8.1 The first three axioms

Checking these axioms, we first admit to have defined a space S[T and a dimension function
dim from this space onto the set {�1, 0, 1, 2, 3}. Built in is the priciple of duality, so we only
have to chekc one half of each doubly stated axiom. We also defined � and �. The last
relation is reflexive, anti-symmetric and – by proposition 7.1 – transitive.

We already included in our space ; as smallest and P as biggest element. So the axiom of
border is fulfilled. A scan of definition 6.1 shows that the axiom of monotone dimension is
fulfilled as well.

8.2 The lattice axiom

Now we have to check that each pair of elements has a unique join. For real elements that
is already guaranteed, and for two coincident elements it is trivially true. Trivially true it is
also if one of the elements is the empty set or the entire space. The commutativity of _ once
more reduces the number of cases. In the next table P stands for point, l for line, A for plane,
i for imaginary, ii for high imaginary; s means true by symmetry, r because of realness, t

5See [Artin1957] or [Boer2009]
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because it is trivial.
_ ; P Pi l li lii A Ai P
; r r t r t t r t r

P s r 1 r 2 3 r 4 r

P i s s 5 6 7 8 9 10 t

l s s s r 11 12 r 13 r

li s s s s 14 15 16 17 t

lii s s s s s 18 19 20 t

A s s s r s s r 21 r

Ai s s s s s s s 22 t

P s s s s s s s s r

The 22 numbered boxes are yet to be proven, which is a tedious and boring job. However,
since x _ x = x we can restrict to distinct elements.

1 Let P be a real point and Qh;,li imaginary, with l a real line. This is plane geometry
and part of proposition ?? on page ??.
(a) If P � l the join is l.
(b) Else it is the low imaginary line ghP,P_li that is perspective with Q.

2 Let P be a real point and lhQ,Ai a low imaginary line. There are three cases.
(a) If P = Q then P � l and trivially the join is l,
(b) If P 6= Q and P � A then it is A, for A is an upperbound and no line nor any other
plane can be an upper bound.
(c) P 6� A. The join is the imaginary plane with axis PQ that is perspective with l.

3 Let P be a real point and l a high imaginary line. Since P 6� l the join must have at
least dimension 2. Let c be the unique line of the congruence of l through P . Then P

is on the imaginary plane A = l|c, which then is the join: no real plane contains l, no
other imaginary plane contains both l and P .

• 4, 9, 10 Let P be a point and A a plane. Then either P � A, in which case the join is
A, or P 6� A and then the join is P.

5 Let be given the distinct imaginary points Ph;,li and Qh;,mi.
(a) If l = m then this line is the join.
(b) If l,m are in a real plane A, the join is A; this is plane geometry and part of
proposition ?? again.
(c) If l,m are skew the join is a high imaginary line by proposition 6.2.

6 Let Ph;,li be an imaginary point and m a real line.
(a) l = m. P � m hence m is the join.
(b) l ^m is a point S and l _m is a plane A. A is an upper bound an no line and no
other plane can be one. Hence A is the join.
(c) l,m are skew. Let Ahm,Pi be the imaginary plane that is perspective with P . Then
A is an upper bound and no other plane nor any line can be one. Hence A is the join.
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7 Let Ph;,li be an imaginary point and mhQ,Ai a low imaginary line.
(a) l meets A in a point R 6= Q. Let a = QR, a0 = m(a), a00 = m(a0), R0 = l(R) and
R

00 = l(R0). Define B
0 = a

0
_ R

0, B00 = a
00
_ R

00, n = B
0
^ B

00, B = n _ a. Then Q � n

and DBB0B00 is the join.
(b) l meets A in a Q. Now the imaginary plane with axis l and perspective with m is
the join.
(c) l � A and Q 6� l and P and m are not perspective. Then A is the join.
(d) l � A, Q � l. Then A is the join.
(e) l � A and Q 6� l and P and m are not perspective. Then P � m and m is the join.

8 Let be given the imaginary point Ph;,li and the high imaginary line mh;,Pi.
(a) If P � m then l belongs to the linear congruence C of m and A = m|hl,Pi is the join.
(b) If P 6� m we take an arbitrary point Q on l and let Q0 = P (Q) and Q

00 = P (Q0),
so P = PQQ0Q00 , see upper part of figure 5. Let c0 2 C be the line through Q. Take any
line n not in the plane l _ c0 and let B = l _ n. Take a point R on n close to Q. Let
c be the line of C through R. Consider the the planes A = c _ Q, A0 = m(AR) and
A

00 = m(A0). These planes meet B in the red lines of the figure. If we move R away
from Q on n, we will reach a position R

0 and a congruence line c
0 so that one of A0 and

A
00, say A

0 will reach Q
0 (middel part of the figure). Next we turn n in B around Q,

repeat the above and find a R
0
n for each n. These points R0

n form a conic and the locus
of the meeting point of A00 and l is l itself (lower part of the figure). That means, there
is one line n such that A00

^ l = Q
00. For this position of n and cR the imaginary plane

DAA0A00 is perspective with P , hence P � A. By construction also m � D. If on the
contrary A

00 contains Q0 and A
0
� Q

00, we have to take the initial R at the other side of
Q, and move it away from Q.

11 Let l be a real, and mP,A a low imaginary line.
(a) l meets A in a point Q 6= P . The dimension of the join is at least 2. There is neither
a real nor an imaginary plane containing them both. So the join is P and the lines are
skew.
(b) l meets A in P . The imaginary line with axis l that is perspective with m is the
join.
(c) l � A but P 6� l. The join is A.
(d) l � A and P � l. The join is A.

12 Let l be a real, and mP,A a high imaginary line.
(a) l is a line of the congruence. Then the join is the imaginary plane with axis l that
is the restriction to l of m.
(b) l is not a line of the congruence. There is no real plane containing m, and an
imaginary plane containing l has l as axis, hence does not contain m. So the lines are
skew and the join is P.

• 13, 16, 17, 19, 20 If l is a line and A a plane then either l � A, in which case the join
is A, or else the join is P.

14 Let lhP,Ai and mhQ,Bi be distinct low imaginary lines.
(a) A 6= B and P nor Q are on the meeting line n = A^B; the lines are not perspective.

13



Figure 5: the join of an imaginary point and a high imaginary line

Then the lines are skew and the join is P.
(b) The same as before, but now the lines ar perspective. The imaginary plane with
axis n and perspective with both l and m is the join.
(c) Again A 6= B but either P � n,Q 6� n or P 6� n,Q � n or P � n,Q � n, P 6= Q.
The lines are skew and the join is P.
(d) Again A 6= B but now P = Q � n. Define n

0
A = l(n), n0

B = m(n), n00
A = l(n0

A),
n
00
B = m(n0

B), D
0 = n

0
A _ n

0
B, D

00 = n
00
A _ n

00
B, p = D

0
^ D

00 and D = p _ n. Then the
imaginary plane FDD0D00 is the join of l and m.
(e) If A = B then the join is A, also if P = Q (but l 6= m by hypothesis.

15 let lhP,Ai be a low imaginary line and m a high imaginary one. Their join is at least a
plane, viz. an imaginary one since no real plane contains m. Then necessarily the axis
of this plane contains P but cannot lie in A, and l must be perspective with m. In all
other cases the lines are skew and the join is P.

18 Let l and m be distinct high imaginary lines. No real plane contains any high imaginary
line. If A is an imaginary plane, its axis must be a line of both congruences. So if l and
m share exactly one congurence line n and if l|n = m|n then this plane A is the join. In
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all other cases the lines are skew and the join is P.

• 21, 22 Let A,B be planes. Then by hypothesis A 6= B and the join is P.

By duality we now know that each pair of elements also has a unique meet or glb.

8.3 The remaining axioms

Less work is checking the next axiom, 9, of su�cient points/hyperplanes: if a � b, there is
a point X such that X 6� a and X � b. Necessarily dim a < dim b. The cases that a = ;

or b = P are trivial. The cases that both a and b are real can be skipped. And if the axiom
holds for a � b and for b � c, it certainly holds for a � c, so we can restrict to cases that
dim b = dim a+ 1.
The remaining cases are (1) a real point in a low imaginary line, (2,3,4) an imaginary point
in a real, low imaginary or high imaginary line, (5) a real line in an imaginary plane, (6,7)
a low imaginary line in a real or imaginary plane, (8) a high imaginary line in an imaginary
plane and an imaginary plane in P.
We prove nr. 4. Let Ph;,li be an imaginary point in a high imaginary line m. Then l is a
line of the congruence of m. Take any other line n of this congruence and take any imaginary
point Q of m on n. Then Q satisfies the axiom.
The other cases are left for the reader. By duality we have the other part of the axiom: if
a � b, there is a plane Y such that Y 6� a and Y � b.

Also as an exercise for the reader we leave to check the axiom of composition (12 cases), which
tells: if a is any element and X a point not in a then dim a _X = dim a + 1, and dually: if
a is any element and ⇠ a hyperplane not containing a then dim a ^X = dim a� 1. The first
part can be proven by checking the relevant cases in section 8.2.

Since we started with real geometry, each real line has already infinite many real points on
it, and each imaginary line has 12 points on it; so the axiom of cardinality is fulfilled.

From the axioms now follows that our space is isomorphic to a vector space over some skew
field. This field is likely to contain the real numbers as a proper subset. In chapter ?? we will
establish an isomorphism between the Klein-space and the numerical complex space. From
that we infer that the field is C.
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Buchhandlung, Leipzig 1892-1907

[Staudt1847] Georg Karl Christian von Staudt: Die Geometrie der Lage; Verlag der Fr.
Korn’schen Buchhandlung, Nürnberg 1847

[Ziegler2012] Renatus Ziegler: Projective Geometry and Line Geometry ; Dornach 2012

Lou de Boer, October 2018

16


