Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

## Projective Algebra $\Lambda_{n}$

# ICCA10, August 4-9, 2014 in Tartu (Estonia) 

## Oliver Conradt

Goetheanum, Section for Mathematics and Astronomy, Switzerland

August 9, 2014

## Introduction: Principle of Duality

Projective Algebra $\Lambda_{n}$

Oliver
Conradt

Which role does the projective principle of duality play in physics?

■ Oliver Conradt, Mathematical Physics in Space and Counterspace, PhD Thesis, University of Basel, Switzerland, 2000; $2^{\text {nd }}$ edition, Dornach, 2008.
■ Projective principle of duality: First stated by the French mathematicians Jean Voictor Poncelet (1788-1867) and Joseph-Diaz Gergonne (1771-1859) in the first quarter of the $19^{\text {th }}$ century.

- Oliver Conradt, The Principle of Duality in Clifford Algebra and Projective Geometry, in: Clifford Algebras and their Applications in Mathematical Physics, Volume 1, pp. 157-194, R. Abłamowicz and B. Fauser (Eds.), Birkäuser, 2000.


## Introduction: Completely Dual Approach

■ Geometric Clifford Algebra $\mathcal{G}_{p, q}(+$, ,

- inner product $A_{\bar{r}} \cdot B_{\bar{s}}=\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{|r-s|}$
- outer product $A_{\bar{r}} \wedge B_{\bar{s}}=\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{r+s}$
- non-degenerate metric
- $\mathcal{G}_{p, q}^{k}$ subspace of $k$-vectors

■ Hestenes and Ziegler, Projective Geometry with Clifford Algebra, Acta Appl. Math., 1991, 23, pp. 25-63.

- Dual multivector $\tilde{A}:=A I^{-1}=A \cdot I^{-1}$
- Dual geometric product $A * B:=(\tilde{A} \tilde{B})^{\sim}$

■ Dual Geometric Clifford Algebra $\mathcal{G}_{p, q}^{-}(+,, *)$

- inner product $A_{\bar{r}}^{-} \circ B_{\bar{s}}^{-}=\left\langle A_{\bar{r}} * B_{\bar{s}}\right\rangle_{|r-s|}$
- outer product $A_{\bar{r}}^{-} \vee B_{\bar{s}}^{-}=\left\langle A_{\bar{r}} * B_{\bar{s}}\right\rangle_{r+s}^{-}$
- $\mathcal{G}_{p, q}^{k-}$ subspace of $k$-vectors


## Introduction: Completely Dual Approach

Projective Algebra $\Lambda_{n}$

Oliver
Conradt

■ Geometric Clifford Algebra $\mathcal{G}_{p, q}^{+}(+$, , $)$

- inner product $A_{\bar{r}}^{+} \cdot B_{\bar{s}}^{+}=\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{|r-s|}^{+}$
- outer product $A_{\bar{r}}^{+} \wedge B_{\bar{s}}^{+}=\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{r+s}^{+}$
- non-degenerate metric
- $\mathcal{G}_{p, q}^{k+}$ subspace of $k$-vectors

■ Hestenes and Ziegler, Projective Geometry with Clifford Algebra, Acta Appl. Math., 1991, 23, pp. 25-63.

- Dual multivector $\tilde{A}:=A I^{-1}=A \cdot I^{-1}$
- Dual geometric product $A * B:=(\tilde{A} \tilde{B})^{\sim}$

■ Dual Geometric Clifford Algebra $\mathcal{G}_{p, q}^{-}(+,, *)$

- inner product $A_{\bar{r}}^{-} \circ B_{\bar{s}}^{-}=\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{|r-s|}^{-}$
- outer product $A_{\bar{r}}^{-} \vee B_{\bar{s}}^{-}=\left\langle A_{\bar{r}} B_{\bar{s}}\right\rangle_{r+s}^{-}$
- $\mathcal{G}_{p, q}^{k-}$ subspace of $k$-vectors


## Introduction: Completely Dual Approach

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

- Plus-minus-notation

■ Double Algebra $\mathcal{G}_{p, q}(+,,, *)$ : Geometric Clifford Algebra $\mathcal{G}_{p, q}^{+}(+,$,$) and Dual Geometric Clifford Algebra$ $\mathcal{G}_{p, q}(+,, *)$ with

- $\mathcal{G}_{p, q}^{+}(+)=,\mathcal{G}_{p, q}^{-}(+$,
- subspaces: $\mathcal{G}_{p, q}^{k+}(+)=,\mathcal{G}_{p, q}^{(n-k)-}(+$,
- two inner products • and o
- two outer products $\wedge$ and $\vee$
- Projective principle of duality is implemented in a
- double Clifford algebra
- with non-degenerating metric


## Introduction: Dirac's secret tool for research

## Projective

 Algebra $\Lambda_{n}$Oliver Conradt

- Dirac, Recollections of an Exciting Era, 1977. In Weiner, C. (ed.), History of Twentieth Century Physics, pp. 109-146, New York, London, Academic Press.
... The second thing I learned from Fraser was projective geometry. Now, that had a profound influence on me because of the mathematical beauty involved in it. There was also very great power in the methods employed. I think probably most physicists know very little about projective geometry. That I would say is a failing in their education. ...
Now, I was always much interested in the beauty of mathematics, and this introduction to me of projective geometry stimulated me very much and provided, I would say, a lifelong interest.
You might think that projective geometry is not of much interest to a physicist, but that is not so. Physicists nowadays are concerned very largely with Minkowski space. Now, if you want to picture relationships in Minkowski space, relationships between vectors and tensors, often the very best way to do it is by using the notions of projective geometry. I was continually using these ideas of projective geometry in my research work. When you want to discover how a particular quantity transforms under a Lorentz transformation, very often the best way of handling the problem is in terms of projective geometry.
It was a most useful tool for research, but I did not mention it in my published work. I do not think I have ever mentioned projective geometry in my published work (but I am not sure about that) because I felt that most physicists were not familiar with it. When I had obtained a particular result, I translated it into an analytic form and put down the argument in terms of equations. That was an argument which any physicist would be able to understand without having had this special training.
However, for the purposes of research, when one is entering into a new field and one does not know what lies in front of one, one wants very much to visualize the things which one is dealing with, and projective geometry does provide the best tool for this.
That applied also to my later work on spinors. One had quite a new kind of quantity to deal with, but for discussing the relationships between spinors, again, the ideas of projective geometry are very useful. ...


## Problem: Nature of Projective Geometry

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

- Projective Geometry
- incidence relations
- operations of connection and intersection
- principle of duality
- no metric
- Literature
- Klein, Vorlesungen über nicht-euklidische Geometrie, Springer, 1968.
- Locher, Projektive Geometrie, Dornach, 1980
- Stoß, Einführung in die Synthetische Liniengeometrie, Dornach, 1999
- Kowol, Projektive Geometrie und Cayley-Klein Geometrien der Ebene, Birkhäuser, 2009
- Ziegler, Projective Geometry and Line Geometry, Dornach, 2012


## Problem: Research Task

■ Determine the double algebra corresponding to projective geometry.
■ No metric!

■ My method was to use synthetic projective geometry to determine projective algebra $\Lambda_{n}$.

- Course of action:

1 definition of projective algebra $\Lambda_{n}$
2 transition from projective to geometric Clifford algebra $\mathcal{G}_{n}$
3 axioms of projective geometry thereby using projective algebra

## Projective Algebra: Complementary Grading

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

■ For a vector space $V$ with finite grading

$$
V=\bigoplus_{k=0}^{n} V_{k}^{+}
$$

there is always a complementary grading

$$
V=\bigoplus_{k=0}^{n} V_{k}^{-}
$$

with $V_{k}^{+}=V_{n-k}^{-}$.

- Plus-minus-notation, plus and minus approach


## Projective Algebra: Product Signs

- We note the two (outer) products of projective algebra $\Lambda_{n}$ by the signs $\wedge$ and $\vee$.
- Multiple outer products

$$
\begin{aligned}
& \bigwedge_{l=1}^{m} X_{l}:=X_{1} \wedge X_{2} \wedge \cdots \wedge X_{m} \\
& \bigvee_{I=1}^{m} X_{I}:=X_{1} \vee X_{2} \vee \cdots \vee X_{m}
\end{aligned}
$$

## Projective Algebra: Definition I

A projective $\mathbb{F}$-algebra $\Lambda_{n}$ oder shorter projective algebra is a set $\Lambda_{n}$ with four operations.

$$
\begin{array}{cccccc}
\Lambda_{n} \times \Lambda_{n} & \longrightarrow & \Lambda_{n} & \mathbb{F} \times \Lambda_{n} & \longrightarrow & \Lambda_{n} \\
(A, B) & \longmapsto & A+B & (\alpha, A) & \longmapsto & \\
(A \cdot A
\end{array}
$$

\[

\]

The operations are called addition ( + ), scalar multiplication (no sign or $\cdot$ ), major outer product ( $\wedge$ ) und minor outer product $(\vee)$. The obey the following conditions:
$(A 1) \mathbb{F}$ is a field with $\operatorname{char}(\mathbb{F}) \neq 2$.

## Projective Algebra: Definition II

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion
(A2) $\Lambda_{n}(+, \cdot)$ is a $\mathbb{F}$-vector space of dimension $2^{n}$, with a complementary grading

$$
\begin{aligned}
\Lambda_{n}(+, \cdot) & =\bigoplus_{k=0}^{n} \Lambda_{n}^{k+}(+, \cdot) \\
& =\bigoplus_{k=0}^{n} \Lambda_{n}^{k-}(+, \cdot), \quad k, n \in \mathbb{N},
\end{aligned}
$$

and with the following dimensions for the subspaces,

$$
\operatorname{dim}\left(\Lambda_{n}^{k}(+, \cdot)\right)=\binom{n}{k}, \quad 0 \leq k \leq n .
$$

## Projective Algebra: Definition III

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion
(A3) $\Lambda_{n}(+, \cdot, \wedge)$ and $\Lambda_{n}(+, \cdot, \vee)$ are two associative $\mathbb{F}$-algebras without identity element. In addition the outer products live up to the requirements:

- All scalars $X_{\overline{0}}$ are left and right zero divisors.
- Outer products between homogeneous multivectors add the grades.

$$
\begin{array}{ll}
A_{\Gamma}^{+} \wedge B_{\bar{s}}^{+}=\left\langle A_{r}^{+} \wedge B_{\bar{s}}^{+}\right\rangle_{r+s}^{+} & r+s \leq n \\
A_{\bar{r}}^{-} \vee B_{\bar{s}}^{-}=\left\langle A_{\bar{r}}^{-} \vee B_{\bar{s}}^{-}\right\rangle_{r+s}^{-} & r+s \leq n
\end{array}
$$

## Projective Algebra: Definition IV

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

## Introduction

Problem
Projective
Algebra
Projective
Geometry
Conclusion

- For 1-vektors $A_{i} \in \Lambda_{n}^{1+}$ or $B_{i} \in \Lambda_{n}^{1-}$ we have with $I>1$

$$
\begin{aligned}
& \bigwedge_{i=1}^{\prime} A_{i}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
A_{1}, A_{2}, \ldots, A_{l} \text { are } \\
\text { linearly independent. }
\end{array}\right. \\
& \bigvee_{i=1}^{\prime} B_{i}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
B_{1}, B_{2}, \ldots, B_{l} \text { are } \\
\text { linearly independent. }
\end{array}\right.
\end{aligned}
$$

## Projective Algebra: Combined Outer Products

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion

## Definition (Combined outer product)

Any mathematical term which contains the combined outer product $\diamond$ can be read twice: Firstly with respect to the plus approach as major outer product $\wedge$ and seconldy with respect to the minus approach as minor outer product $\vee$.

Example: The expression

$$
X_{\overline{1}} \diamond Y_{\overline{1}}=-Y_{\overline{1}} \diamond X_{\overline{1}} \quad \forall X_{\overline{1}}, Y_{\overline{1}} \in \Lambda_{n}^{1}
$$

means

$$
\begin{array}{ll}
X_{\overline{1}}^{+} \wedge Y_{\overline{1}}^{+}=-Y_{\overline{1}}^{+} \wedge X_{\overline{1}}^{+} & \forall X_{\overline{1}}^{+}, Y_{\overline{1}}^{+} \in \Lambda_{n}^{1+} \\
X_{\overline{1}}^{-} \vee Y_{\overline{1}}^{-}=-Y_{\overline{1}}^{-} \vee X_{\overline{1}}^{-} & \forall X_{\overline{1}}^{-}, Y_{\overline{1}}^{-} \in \Lambda_{n}^{1-}
\end{array}
$$

## Projective Algebra against Graßmann algebra

Oliver
Conradt

- A Graßmann algebra $\Lambda V$ of a vector space $V$ with $\operatorname{dim} V=n$ is a associative, unital, graded and antisymmetric algebra of dimension $2^{n}$.
- Projective algebra $\Lambda_{n}$ is a double algebra, this is why we can only check whether the plus approach $\Lambda_{n}(+, \cdot, \wedge)$ or the minus approach $\Lambda_{n}(+, \cdot, \vee)$ is a Graßmann algebra.
- same properties: associative, graded, dimensions of the algebra and its subspaces, antisymmetric
- different properties: no identity element, scalars are zero divisors


## Projective Algebra: Binary Indices

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

■ n-digit binary numbers:

$$
\mathbf{b} \equiv b_{n-1} \ldots b_{1} b_{0}=\left[\sum_{k=0}^{n-1} b_{k} 2^{k}\right]_{10}, \quad b_{k} \in\{0,1\}
$$

- Sum of digits: $S(\mathbf{b}):=\left[\sum_{k=0}^{n-1} b_{k}\right]_{10}$

■ Binary complement: $\overline{\mathbf{b}}=\overline{b_{n-1} \ldots b_{1} b_{0}}:=\overline{b_{n-1}} \ldots \overline{b_{1}} \overline{b_{0}}$ with $\overline{0}:=1$ and $\overline{1}:=0$.
■ lower left indices ${ }_{\left(I_{1} I_{2} \ldots I_{m}\right)}$ b and upper left indices $\left({ }_{1} I_{2} \ldots I_{m}\right) \mathbf{b}$

## Projective Algebra: Left Indices

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion

Example: $\mathbf{b}=[01011]_{2}$

$$
\text { Definition }{ }^{\left(I_{1} I_{2} \ldots I_{m}\right)} \mathbf{b}:=\overline{\left(I_{1} I_{2} \ldots I_{m}\right)}
$$

$$
\begin{array}{rlrl}
S(\mathbf{b}) & =3 & S(\overline{\mathbf{b}}) & =2 \\
\mathbf{b} & =01011 & & \overline{\mathbf{b}}
\end{array}=10100 .
$$

## Projective Algebra: Binary Indices for $m$ Elements

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion

Theorem
Let $V$ be a vector space, $A_{i} \in V, i \in\{1, \ldots, m\}$ and $\mathbf{b}$ a binary variable with $m$ digits. Then we can label the $m$ elements $A_{i}$ with

$$
V \ni A_{\mathbf{b}}, \quad S(\mathbf{b})=1 .
$$

## Proof.

With $\mathbf{b}_{i}=\left[2^{i-1}\right]_{10}$ we get $S\left(\mathbf{b}_{i}\right)=1$ and

$$
A_{i}=A_{\mathbf{b}_{i}}, \quad 1 \leq i \leq m
$$

## Projective Algebra: Basis

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion

## Definition (Basis of projective algebra in the plus approach)

Let $\mathbf{b}$ be a binary variable with $n$ digits, $\left\{P_{\mathbf{b}}\right\}$ with $S(\mathbf{b})=1$ a set of $n$ basis 1 -vectors from $\Lambda_{n}^{1+}$ and $1^{+} \in \Lambda_{n}^{0+} \backslash\{\mathbf{0}\}$ a vector of grade 0 . Then the homogeneous multivectors

$$
P_{\mathbf{b}}= \begin{cases}1^{+}, & S(\mathbf{b})=0 \\ \bigwedge_{l=1}^{S(\mathbf{b})} P_{\mathbf{b}}, & 0<S(\mathbf{b}) \leq n\end{cases}
$$

form a basis for the $2^{n}$-dimensional vector space of projective algebra $\Lambda_{n}$.

## Projective Algebra: Basis

## Definition (Basis of projective algebra in the minus approach)

Let $\mathbf{b}$ be a binary variable with $n$ digits, $\left\{E_{\mathbf{b}}\right\}$ with $S(\mathbf{b})=1$ a set of $n$ basis 1 -vectors from $\Lambda_{n}^{1-}$ and $1^{-} \in \Lambda_{n}^{0-} \backslash\{\mathbf{0}\}$ a vector of grade 0 . Then the homogeneous multivectors

$$
E_{\mathbf{b}}= \begin{cases}1^{-}, & S(\mathbf{b})=0 \\ V_{I=1}^{S(\mathbf{b})} E_{\mathbf{b}}, & 0<S(\mathbf{b}) \leq n\end{cases}
$$

form a basis for the $2^{n}$-dimensional vector space of projective algebra $\Lambda_{n}$.

Notation for the basis, if the expression is true in both approaches: $\left\{B_{\mathbf{b}}\right\}$, i. e. $\left\{B_{\mathbf{b}}^{+}\right\}=\left\{P_{\mathbf{b}}\right\}$ and $\left\{B_{\mathbf{b}}^{-}\right\}=\left\{E_{\mathbf{b}}\right\}$.

## Projective Algebra: Transformation of the Basis

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective

## Geometry

Conclusion

For the basis transformations

$$
\begin{aligned}
& E_{\mathbf{b}}=\sum_{S(\mathbf{c})=n-k} \zeta_{\mathbf{b c}} P_{\mathbf{c}}, \quad 0 \leq S(\mathbf{b})=k \leq n, \\
& P_{\mathbf{b}}=\sum_{S(\mathbf{c})=n-k} \zeta_{\mathbf{b c}}^{-1} E_{\mathbf{c}},
\end{aligned}
$$

we get with $S(\mathbf{b})=S(\mathbf{d})=k$

$$
\sum_{S(\mathbf{c})=n-k} \zeta_{\mathbf{b c}} \zeta_{\mathbf{c d}}^{-1}=\sum_{S(\mathbf{c})=n-k} \zeta_{\mathbf{b c}}^{-1} \zeta_{\mathbf{c d}}=\delta_{\mathbf{b d}}
$$

where $\delta_{\mathbf{b d}}$ is the Kronecker-delta-symbol,

$$
\delta_{\mathbf{b d}}:= \begin{cases}1, & \mathbf{b}=\mathbf{d} \\ 0, & \mathbf{b} \neq \mathbf{d}\end{cases}
$$

## Projective Algebra: Coefficients $\alpha_{\mathbf{b c}}$

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective
Geometry
Conclusion

## Theorem

Let $\mathbf{b}, \mathbf{c}, \mathbf{d}$ and $\mathbf{e}$ be binary n-digit numbers with $\mathbf{d}=\mathbf{b}$ AND $\mathbf{c}$ and $\mathbf{e}=\mathbf{b}$ XOR $\mathbf{c}$. Then we have

$$
B_{\mathbf{b}} \diamond B_{\mathbf{c}}= \begin{cases}\alpha_{\mathbf{b c}} B_{\mathrm{e}} & S(\mathbf{d})=0 \\ \mathbf{0} & S(\mathbf{d}) \neq 0\end{cases}
$$

where

$$
\alpha_{\mathbf{b c}}=(-1)^{\sum_{l=1}^{n-1} b_{l} \sum_{m=0}^{l-1} c_{m}}=(-1)^{\sum_{l=0}^{n-2} c_{l} \sum_{m=l+1}^{n-1} b_{m}} .
$$

$$
\begin{aligned}
\alpha_{\mathbf{b c}} \alpha_{\mathbf{c b}} & =(-1)^{S(\mathbf{b}) S(\mathbf{c})} \quad \text { for } \quad S(\mathbf{b} \text { AND } \mathbf{c})=0 \\
X_{\bar{r}} \diamond Y_{\bar{s}} & =(-1)^{r s} \cdot Y_{\bar{s}} \diamond X_{\bar{r}}
\end{aligned}
$$

## Projective Algebra: Harmonic Model

Projective Algebra $\Lambda_{n}$

Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

The harmonic model of the projective Algebra $\Lambda_{n}$ is given by

$$
\begin{aligned}
& E_{\mathbf{b}}=\alpha_{\mathbf{b} \mathbf{b}} P_{\overline{\mathbf{b}}}, \quad 0 \leq S(\mathbf{b}) \leq n, \\
& P_{\mathbf{b}}=\alpha_{\overline{\mathbf{b}} \mathbf{b}} E_{\overline{\mathbf{b}}},
\end{aligned}
$$

with

$$
\begin{aligned}
& \alpha_{\mathbf{b} \overline{\mathbf{b}}}=(-1)^{\sum_{l=0}^{n-2} \bar{b}_{l} \sum_{m=l+1}^{n-1} b_{m}}=(-1)^{\sum_{l=1}^{n-1} b_{l} \sum_{m=0}^{l-1} \bar{b}_{m}}, \\
& \alpha_{\overline{\mathbf{b}} \mathbf{b}}=(-1)^{k(n-k)} \alpha_{\mathbf{b} \overline{\mathbf{b}}} .
\end{aligned}
$$

We then get with $X_{\bar{k}}^{+}=\sum_{S(\mathbf{b})=k} \mu_{\mathbf{b}} P_{\mathbf{b}}, Y_{\bar{k}}^{-}=\sum_{S(\mathbf{b})=k} \nu_{\mathbf{b}} E_{\mathbf{b}}$ and $0<k<n$

$$
X_{\bar{k}}^{+} \wedge Y_{\bar{k}}^{-}=\left[\sum_{S(\mathbf{b})=k} \mu_{\mathbf{b}} \nu_{\mathbf{b}}\right] I^{+}, \quad X_{\bar{k}}^{+} \vee Y_{\bar{k}}^{-}=\left[\sum_{S(\mathbf{b})=k} \mu_{\mathbf{b}} \nu_{\mathbf{b}}\right] I^{-} .
$$

## Projective Algebra: Transition to Double GCA

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Problem
Projective
Algebra
Projective Geometry

Conclusion

Define two symmetric bilinear forms, one in the plus, the other in the minus approach of projective algebra $\Lambda_{n}$.

$$
\begin{aligned}
B: \Lambda_{n}^{1} \otimes \Lambda_{n}^{1} & \longrightarrow \Lambda_{n}^{0} \\
(X, Y) & \longmapsto B(X, Y)=B(Y, X)
\end{aligned}
$$

## Projective Algebra: Transition to Double GCA

Projective Algebra $\Lambda_{n}$

Oliver
Conradt

## Definition (Geometric products)

Let $\Lambda_{n}$ be a projective $\mathbb{F}$-algebra and $B^{+} / B^{-}$a symmetric bilinear form in the plus/minus approach. We call the operations

\[

\]

major geometric product (no sign) and minor geometric product (*). They obey the following conditions:

- The geometric products are associative and distributive.
- For all scalars $X_{\overline{0}}$ the geometric product is the same as the scalar multiplication.
- Contraction rule for all 1-vectors.
- For an orthogonal system $\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\} \subset \Lambda_{n}^{1}$ the geometric and outer products are the same.


## Projective Algebra: Transition to Double GCA

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

Contraction rule:

$$
\begin{aligned}
X_{\overline{1}}^{+} X_{\overline{1}}^{+} & =B^{+}\left(X_{\overline{1}}^{+}, X_{\overline{1}}^{+}\right) \in \Lambda_{n}^{0+} & & \forall X_{\overline{1}}^{+} \in \Lambda_{n}^{1+}(+, \cdot) \\
X_{\overline{1}}^{-} * X_{\overline{1}}^{-} & =B^{-}\left(X_{\overline{1}}^{-}, X_{\overline{1}}^{-}\right) \in \Lambda_{n}^{0-} & & \forall X_{\overline{1}}^{-} \in \Lambda_{n}^{1-}(+, \cdot)
\end{aligned}
$$

Orthogonal system $\mathcal{S}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\} \subset \Lambda_{n}^{1}$ :

$$
\begin{aligned}
& \prod_{I=1}^{m} X_{I}=\bigwedge_{I=1}^{m} X_{I} \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{S}^{+} \text {is a orthogonal system with } \\
\text { respect to the bilinear form } B^{+} .
\end{array}\right. \\
& \underset{I=1}{m} X_{I}=\bigvee_{I=1}^{m} X_{I} \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{S}^{-} \text {is a orthogonal system with } \\
\text { respect to the bilinear form } B^{-} .
\end{array}\right.
\end{aligned}
$$

## Projective Algebra: Proposal to Discuss

## geometric algebras

Problem
Projective
Algebra
Projective Geometry

Conclusion

## Projective Geometry: Equivalence Relation

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

## Definition (Equivalence relation)

Two multivectors $A$ and $B$ of the projective $\mathbb{F}$-algebra $\Lambda_{n}$ are called equivalent, if and only if $A$ and $B$ differ in the number $\xi \in \mathbb{F} \backslash\{0\}$,

$$
A \simeq B \quad: \Longleftrightarrow \quad A=\xi B
$$

## Projective Geometry: Axioms I

Projective Algebra $\Lambda_{n}$

Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

Let $\Lambda_{n}(+, \cdot, \wedge, \vee)$ be a projective $\mathbb{F}$-algebra. The projective geometry of dimension $2^{n}$ is determined by the following axioms:
(A1) Elements of projective geometry.
a) There are $n+1$ different types of basic elements. Each type is represented by the homogeneous multivectors $X_{\bar{k}}$ of one of the der $n+1$ different vector subspaces $\Lambda_{n}^{k}$.
b) A multivector $M$ of the vector space $\Lambda_{n}(+$, represents an element, i.e. in general of each type of basic element exactly one.

$$
M=\sum_{k=0}^{n}\langle M\rangle_{k} .
$$

## Projective Geometry: Axioms II

c) Equivalent multivectors represent the same geometric locus.
(A2) Incidence relation. Two elements $A$ und $B$ are incident if and only if the corresponding multivectors $A$ and $B$ meet the conditions

$$
A \wedge B=0 \quad \text { and } \quad A \vee B=0
$$

(A3) Intersection and connection. The geometric operation of connection corresponds to the major outer product $(\wedge)$, the geometric operation of intersection to the minor outer product $(\checkmark)$.

## Real, Complex or Finite Projective Geometry

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Problem
Projective
Algebra
Projective Geometry

Conclusion

## Definition

Depending on the filed $\mathbb{F}$ of the projective $\mathbb{F}$-algbera $\Lambda_{n}$ we have $\mathbb{F}=\mathbb{R} \rightarrow$ real projective geometry, $\mathbb{F}=\mathbb{C} \rightarrow$ complex projective geometry, finite $\mathbb{F} \rightarrow$ finite projective geometry.

## Projective Geometry: Principle of Duality

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Space $\Lambda_{n}^{+} \quad$ Counterspace $\Lambda_{n}^{-}$

| $\left.\begin{array}{rl}X_{\bar{k}}^{+} & \leftrightarrow \\ \wedge & \leftrightarrow \\ \vee & \vee_{\bar{k}}^{-} \\ \vee & \leftrightarrow \\ \wedge & \wedge \\ A \wedge B=0 \\ \text { and } \\ A \vee B=0\end{array}\right\}$ | $\leftrightarrow\left\{\begin{array}{l}A \vee B=0 \\ \text { and } \\ A \wedge B=0\end{array}\right.$ |
| ---: | :--- |

Table: Principle of duality in projective geometry of dimension $2^{n}$.

## Proj. Geometry: Primitive Geometric Forms I

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

## Definition ( $k$-primitive geometric forms of grade $m$ )

Let $X_{i}^{ \pm}=\left\langle X_{i}\right\rangle_{k}^{ \pm}$denote $m+1$ linear independent $k$-vectors with $1 \leq i \leq m+1 \leq\binom{ n}{k}$ and $0 \leq k \leq n$. Then the $k$-primitive form is given by

$$
X=\sum_{i=1}^{m+1} \xi_{i} X_{i} \quad\left(\xi_{1}, \ldots, \xi_{m+1}\right) \in \mathbb{F} \backslash\{\mathbf{0}\}
$$

Examples in $\Lambda_{4}(n=4)$ with

- $\Lambda_{4}^{0+} \rightarrow$ space of planes as a whole
- $\Lambda_{4}^{1+} \rightarrow$ all points of space
- $\Lambda_{4}^{2+} \rightarrow$ all linear complexes of space


## Proj. Geometry: Primitive Geometric Forms II

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

- $\Lambda_{4}^{3+} \rightarrow$ all planes of space
- $\Lambda_{4}^{4+} \rightarrow$ space of points as a whole

Primitive geometric forms:

- $k=1, m=1 \rightarrow X=\sum_{i=1}^{2} \xi_{i}\left\langle X_{i}\right\rangle_{1}^{+}$pencil of points

- $k=1, m=2 \rightarrow X=\sum_{i=1}^{3} \xi_{i}\left\langle X_{i}\right\rangle_{1}^{+}$field of points



## Proj. Geometry: Primitive Geometric Forms III

Projective Algebra $\Lambda_{n}$

Oliver Conradt

Problem
Projective
Algebra
Projective Geometry

■ $k=1, m=3 \rightarrow X=\sum_{i=1}^{4} \xi_{i}\left\langle X_{i}\right\rangle_{1}^{+}$space of points


- $k=2, m=1 \rightarrow X=\sum_{i=1}^{2} \xi_{i}\left\langle X_{i}\right\rangle_{2}^{+}$pencil of complexes

■ $k=2, m=2 \rightarrow X=\sum_{i=1}^{3} \xi_{i}\left\langle X_{i}\right\rangle_{2}^{+}$bundle of complexes
■ $k=2, m=3 \rightarrow X=\sum_{i=1}^{4} \xi_{i}\left\langle X_{i}\right\rangle_{2}^{+}$3-manifold of compl.

- $k=2, m=4 \rightarrow X=\sum_{i=1}^{5} \xi_{i}\left\langle X_{i}\right\rangle_{2}^{+}$4-manifold of compl.

■ $k=2, m=5 \rightarrow X=\sum_{i=1}^{6} \xi_{i}\left\langle X_{i}\right\rangle_{2}^{+}$space of complexes

## Proj. Geometry: Primitive Geometric Forms IV

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

- $k=3, m=1 \rightarrow X=\sum_{i=1}^{2} \xi_{i}\left\langle X_{i}\right\rangle_{3}^{+}$pencil of planes


■ $k=3, m=2 \rightarrow X=\sum_{i=1}^{3} \xi_{i}\left\langle X_{i}\right\rangle_{3}^{+}$bundle of planes


- $k=3, m=3 \rightarrow X=\sum_{i=1}^{4} \xi_{i}\left\langle X_{i}\right\rangle_{3}^{+}$space of planes


## Projective Geometry: Linear Complex

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

Linear complex: $k=\beta_{0011} P_{0011}+\beta_{1100} P_{1100}$


$$
\begin{aligned}
& k \wedge k=2 \beta_{0011} \beta_{1100} P_{1111} \\
& \quad=0 \\
& \Leftrightarrow \beta_{0011}=0 \text { or } \beta_{1100}=0 \\
& X_{\overline{1}}=\sum_{S(\mathbf{b})=1} \gamma_{\mathbf{b}} P_{\mathbf{b}} \neq \mathbf{0} \\
& X_{\overline{1}} \wedge k \neq \mathbf{0}
\end{aligned}
$$

null polarity
$\phi\left(X_{\overline{1}}\right):=X_{\overline{1}} \wedge k$
incident point-plane-pair $\phi\left(X_{\overline{1}}\right) \wedge X_{\overline{1}}=\mathbf{0}$

## Projective Geometry: Cross Ratio

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

## Definition (Cross Ratio)

Four different basic elements

$$
A=\langle A\rangle_{k}, \quad B=\langle B\rangle_{k}, \quad C=\langle C\rangle_{k}, \quad D=\langle D\rangle_{k},
$$

of a $k$-primitive geometric form of first grade with

$$
\gamma C=A+\lambda B \quad \text { and } \quad \delta D=A+\mu B
$$

form the cross ratio

$$
D V(A B C D):=\frac{\lambda}{\mu} .
$$

$$
\begin{aligned}
& T_{i}=\lambda_{i} X+\mu_{i} Y \rightarrow D V\left(T_{1} T_{2} T_{3} T_{4}\right)=\frac{\left(\frac{\lambda_{1} \mu_{3}-\mu_{1} \lambda_{3}}{\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}}\right)}{\left(\frac{\lambda_{1} \mu_{4}-\mu_{1} \lambda_{4}}{\lambda_{2} \mu_{4}-\mu_{2} \lambda_{4}}\right)} \\
& \quad i \in\{1,2,3,4\}
\end{aligned}
$$

## Projective Geometry: Collineation I

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

A collineation is a linear mapping

$$
\begin{array}{ll}
\Phi: & \Lambda_{n} \rightarrow \Lambda_{n} \\
& X_{\bar{k}} \mapsto\left\langle\Phi\left(X_{\bar{k}}\right)\right\rangle_{k}
\end{array}
$$

with

$$
\Phi(A \wedge B)=\Phi(A) \wedge \Phi(B)
$$

It is determined by $n+1$ pairs of 1 -vectors (fundamental theorem of projective geometry) and-up to the factor $\operatorname{det} \Phi$-preserves the minor outer product too,

$$
\operatorname{det} \phi \cdot \Phi(A \vee B)=\Phi(A) \vee \Phi(B)
$$

## Projective Geometry: Collineation II

Projective Algebra $\Lambda_{n}$

Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

Examples in $\Lambda_{4}$ :
■ Homology $\Phi_{1}$ : Let $Z_{\overline{1}}=P_{0001}$ be the fixed point, $Z_{\overline{3}}=P_{1110}$ the point wise fixed plane. $Z_{\overline{1}}$ and $Z_{\overline{3}}$ are not incident, i.e. $Z_{\overline{1}} \wedge Z_{\overline{3}} \neq \mathbf{0}$. And let

$$
A=P_{0001}+\lambda P_{0010} \mapsto \Phi_{1}(A)=P_{0001}+\mu P_{0010}
$$

be a point-pair related by $\Phi_{1}$. Then we have

$$
\begin{aligned}
\Phi_{1}\left(P_{0001}\right) & =\lambda P_{0001} \\
\Phi_{1}\left(P_{\mathbf{b}}\right) & =\mu P_{\mathbf{b}} \quad \text { for } S(\mathbf{b})=1 \text { and } \mathbf{b} \neq 0001
\end{aligned}
$$

or

$$
X_{\overline{1}}=\sum_{S(\mathbf{b})=1} \gamma_{\mathbf{b}} P_{\mathbf{b}} \mapsto \Phi_{1}\left(X_{\overline{1}}\right)=\gamma_{0001}(\lambda-\mu) Z_{\overline{1}}+\mu X_{\overline{1}} .
$$

## Projective Geometry: Collineation III

Projective
Algebra $\Lambda_{n}$
Oliver
Conradt

Introduction
Problem
Projective
Algebra
Projective Geometry

Conclusion

- Elation $\Phi_{2}$ : Let $Z_{\overline{1}}=P_{0001}$ be the fixed point, $Z_{\overline{3}}=P_{0111}$ the point wise fixed plane. $Z_{\overline{1}}$ and $Z_{\overline{3}}$ are incident, i.e. $Z_{\overline{1}} \wedge Z_{\overline{3}}=\mathbf{0}$. And let

$$
A=P_{1000} \mapsto \Phi_{2}(A)=P_{0001}+\lambda P_{1000}
$$

be a point-pair related by $\Phi_{2}$. Then we get

$$
\begin{aligned}
\Phi_{2}\left(P_{\mathbf{b}}\right) & =\lambda P_{\mathbf{b}} \quad \text { for } S(\mathbf{b})=1 \text { and } \mathbf{b} \neq 1000 \\
\Phi_{2}\left(P_{1000}\right) & =P_{0001}+\lambda P_{1000}
\end{aligned}
$$

or

$$
X_{\overline{1}}=\sum_{S(\mathbf{b})=1} \gamma_{\mathbf{b}} P_{\mathbf{b}} \mapsto \Phi_{2}\left(X_{\overline{1}}\right)=\gamma_{1000} Z_{\overline{1}}+\lambda X_{\overline{1}}
$$

## Conclusion

- Definition of projective algebra $\Lambda_{n}$ as a double Graßmann algebra but with the scalars as zero divisors.
- Introduction of binary indices
- Transition from projective to geometric algebra by introducing two geometric products in $\Lambda_{n}$
- Definition of projective geometry.

■ All grades represent a geometric object. In projective geometry we use the whole structure of $\Lambda_{n}$.

- The projective principle of duality is reflected by the structure of a double algebra where the two algebras are isomorphic.

