
Projective
Algebra Λn

Oliver
Conradt

Introduction

Problem

Projective
Algebra

Projective
Geometry

Conclusion

Projective Algebra Λn

ICCA10, August 4-9, 2014 in Tartu (Estonia)

Oliver Conradt

Goetheanum, Section for Mathematics and Astronomy, Switzerland

August 9, 2014

Oliver Conradt Projective Algebra Λn



Projective
Algebra Λn

Oliver
Conradt

Introduction

Problem

Projective
Algebra

Projective
Geometry

Conclusion

Introduction: Principle of Duality

Which role does the projective principle of duality play in
physics?

Oliver Conradt, Mathematical Physics in Space and
Counterspace, PhD Thesis, University of Basel,
Switzerland, 2000; 2nd edition, Dornach, 2008.

Projective principle of duality: First stated by the French
mathematicians Jean Voictor Poncelet (1788-1867)
and Joseph-Diaz Gergonne (1771-1859) in the first
quarter of the 19th century.

Oliver Conradt, The Principle of Duality in Clifford
Algebra and Projective Geometry, in: Clifford Algebras
and their Applications in Mathematical Physics, Volume 1,
pp. 157-194, R. Ab lamowicz and B. Fauser (Eds.),
Birkäuser, 2000.
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Introduction: Completely Dual Approach

Geometric Clifford Algebra Gp,q(+, , )

• inner product Ar · Bs = 〈ArBs〉|r−s|
• outer product Ar ∧ Bs = 〈ArBs〉r+s

• non-degenerate metric
• Gkp,q subspace of k-vectors

Hestenes and Ziegler, Projective Geometry with Clifford
Algebra, Acta Appl. Math., 1991, 23, pp. 25-63.

Dual multivector Ã := AI−1 = A · I−1

Dual geometric product A ∗ B := (ÃB̃)∼

Dual Geometric Clifford Algebra G−p,q(+, , ∗)
• inner product A−r ◦ B

−
s = 〈Ar ∗ Bs〉−|r−s|

• outer product A−r ∨ B−s = 〈Ar ∗ Bs〉−r+s

• Gk−p,q subspace of k-vectors

Oliver Conradt Projective Algebra Λn
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Introduction: Completely Dual Approach

Geometric Clifford Algebra G+
p,q(+, , )

• inner product A+
r · B

+
s = 〈ArBs〉+|r−s|

• outer product A+
r ∧ B+

s = 〈ArBs〉+r+s

• non-degenerate metric
• Gk+

p,q subspace of k-vectors

Hestenes and Ziegler, Projective Geometry with Clifford
Algebra, Acta Appl. Math., 1991, 23, pp. 25-63.

Dual multivector Ã := AI−1 = A · I−1

Dual geometric product A ∗ B := (ÃB̃)∼

Dual Geometric Clifford Algebra G−p,q(+, , ∗)
• inner product A−r ◦ B

−
s = 〈ArBs〉−|r−s|

• outer product A−r ∨ B−s = 〈ArBs〉−r+s

• Gk−p,q subspace of k-vectors
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Introduction: Completely Dual Approach

Plus-minus-notation

Double Algebra Gp,q(+, , , ∗): Geometric Clifford Algebra
G+
p,q(+, , ) and Dual Geometric Clifford Algebra
Gp,q(+, , ∗) with

• G+
p,q(+, ) = G−p,q(+, )

• subspaces: Gk+
p,q(+, ) = G(n−k)−

p,q (+, )
• two inner products · and ◦
• two outer products ∧ and ∨

Projective principle of duality is implemented in a

• double Clifford algebra
• with non-degenerating metric

Oliver Conradt Projective Algebra Λn
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Introduction: Dirac’s secret tool for research

Dirac, Recollections of an Exciting Era, 1977. In Weiner, C. (ed.),
History of Twentieth Century Physics, pp. 109-146, New York,
London, Academic Press.

. . . The second thing I learned from Fraser was projective geometry. Now, that had a profound influence on me
because of the mathematical beauty involved in it. There was also very great power in the methods employed.
I think probably most physicists know very little about projective geometry. That I would say is a failing in
their education. . . .
Now, I was always much interested in the beauty of mathematics, and this introduction to me of projective
geometry stimulated me very much and provided, I would say, a lifelong interest.
You might think that projective geometry is not of much interest to a physicist, but that is not so. Physicists
nowadays are concerned very largely with Minkowski space. Now, if you want to picture relationships in
Minkowski space, relationships between vectors and tensors, often the very best way to do it is by using the
notions of projective geometry. I was continually using these ideas of projective geometry in my research work.
When you want to discover how a particular quantity transforms under a Lorentz transformation, very often
the best way of handling the problem is in terms of projective geometry.
It was a most useful tool for research, but I did not mention it in my published work. I do not think I have ever
mentioned projective geometry in my published work (but I am not sure about that) because I felt that most
physicists were not familiar with it. When I had obtained a particular result, I translated it into an analytic
form and put down the argument in terms of equations. That was an argument which any physicist would be
able to understand without having had this special training.
However, for the purposes of research, when one is entering into a new field and one does not know what lies
in front of one, one wants very much to visualize the things which one is dealing with, and projective geometry
does provide the best tool for this.
That applied also to my later work on spinors. One had quite a new kind of quantity to deal with, but for
discussing the relationships between spinors, again, the ideas of projective geometry are very useful. . . .

Oliver Conradt Projective Algebra Λn
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Problem: Nature of Projective Geometry

Projective Geometry

• incidence relations
• operations of connection and intersection
• principle of duality
• no metric

Literature

• Klein, Vorlesungen über nicht-euklidische
Geometrie, Springer, 1968.

• Locher, Projektive Geometrie, Dornach, 1980
• Stoß, Einführung in die Synthetische

Liniengeometrie, Dornach, 1999
• Kowol, Projektive Geometrie und Cayley-Klein

Geometrien der Ebene, Birkhäuser, 2009
• Ziegler, Projective Geometry and Line Geometry,

Dornach, 2012
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Problem: Research Task

Determine the double algebra corresponding to projective
geometry.

No metric!

My method was to use synthetic projective geometry to
determine projective algebra Λn.

Course of action:

1 definition of projective algebra Λn

2 transition from projective to geometric Clifford algebra Gn
3 axioms of projective geometry thereby using projective

algebra

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Complementary Grading

For a vector space V with finite grading

V =
n⊕

k=0

V+
k

there is always a complementary grading

V =
n⊕

k=0

V−k

with V+
k = V−n−k .

Plus-minus-notation, plus and minus approach

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Product Signs

We note the two (outer) products of projective algebra Λn

by the signs ∧ and ∨.

Multiple outer products

m∧
l=1

Xl := X1 ∧ X2 ∧ · · · ∧ Xm

m∨
l=1

Xl := X1 ∨ X2 ∨ · · · ∨ Xm

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Definition I

A projective F-algebra Λn oder shorter projective algebra is a
set Λn with four operations.

Λn × Λn
+−→ Λn

(A,B) 7−→ A + B

F× Λn
·−→ Λn

(α,A) 7−→ α · A

Λn × Λn
∧−→ Λn

(A,B) 7−→ A ∧ B
Λn × Λn

∨−→ Λn

(A,B) 7−→ A ∨ B

The operations are called addition (+), scalar multiplication
(no sign or ·), major outer product (∧) und minor outer
product (∨). The obey the following conditions:

(A1) F is a field with char(F) 6= 2.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Definition II

(A2) Λn(+, ·) is a F-vector space of dimension 2n, with
a complementary grading

Λn(+, ·) =
n⊕

k=0

Λk+
n (+, ·)

=
n⊕

k=0

Λk−
n (+, ·), k, n ∈ N,

and with the following dimensions for the
subspaces,

dim
(

Λk
n(+, ·)

)
=

(
n

k

)
, 0 ≤ k ≤ n.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Definition III

(A3) Λn(+, ·,∧) and Λn(+, ·,∨) are two associative
F-algebras without identity element. In addition
the outer products live up to the requirements:

All scalars X0 are left and right zero divisors.

Outer products between homogeneous
multivectors add the grades.

A+
r ∧ B+

s = 〈A+
r ∧ B+

s 〉
+
r+s r + s ≤ n

A−r ∨ B−s = 〈A−r ∨ B−s 〉
−
r+s r + s ≤ n

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Definition IV

For 1-vektors Ai ∈ Λ1+
n or Bi ∈ Λ1−

n we have
with l > 1

l∧
i=1

Ai = 0 ⇐⇒
{

A1, A2, . . . , Al are
linearly independent.

l∨
i=1

Bi = 0 ⇐⇒
{

B1, B2, . . . , Bl are
linearly independent.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Combined Outer Products

Definition (Combined outer product)

Any mathematical term which contains the combined outer
product ♦ can be read twice: Firstly with respect to the plus
approach as major outer product ∧ and seconldy with respect
to the minus approach as minor outer product ∨ .

Example: The expression

X1 ♦ Y1 = −Y1 ♦ X1 ∀ X1,Y1 ∈ Λ1
n

means

X+
1
∧ Y +

1
= −Y +

1
∧ X+

1
∀ X+

1
,Y +

1
∈ Λ1+

n

X−
1
∨ Y−

1
= −Y−

1
∨ X−

1
∀ X−

1
,Y−

1
∈ Λ1−

n

Oliver Conradt Projective Algebra Λn
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Projective Algebra against Graßmann algebra

A Graßmann algebra
∧
V of a vector space V with

dimV = n is a associative, unital, graded and
antisymmetric algebra of dimension 2n.

Projective algebra Λn is a double algebra, this is why we
can only check whether the plus approach Λn(+, ·,∧) or
the minus approach Λn(+, ·,∨) is a Graßmann algebra.

• same properties: associative, graded,
dimensions of the algebra and its subspaces,
antisymmetric
• different properties: no identity element,

scalars are zero divisors

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Binary Indices

n-digit binary numbers:

b ≡ bn−1 . . . b1b0 =

[
n−1∑
k=0

bk2k

]
10

, bk ∈ {0, 1}

Sum of digits: S(b) :=
[∑n−1

k=0 bk

]
10

Binary complement: b = bn−1 . . . b1b0 := bn−1 . . . b1 b0

with 0 := 1 and 1 := 0.

lower left indices b(l1l2...lm) and upper left indices b(l1l2...lm)

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Left Indices

Example: b = [01011]2 Definition b(l1l2...lm) := b(l1l2...lm)

S(b) = 3 S
(
b
)

= 2

b = 01011 b = 10100

b1 = 00001 b1 = 11110 b1 = 00100

b2 = 00010 b2 = 11101 b2 = 10000

b3 = 01000 b3 = 10111 b(12) = 10100 = b

b(12) = 00011 b(12) = 11100

b(13) = 01001 b(13) = 10110 b
1

= 11011

b(23) = 01010 b(23) = 10101 b
2

= 01111

b(123) = 01011 = b b(123) = 10100 = b b
(12)

= 01011 = b

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Binary Indices for m Elements

Theorem

Let V be a vector space, Ai ∈ V , i ∈ {1, . . . ,m} and b a
binary variable with m digits. Then we can label the m
elements Ai with

V 3 Ab, S(b) = 1.

Proof.

With bi =
[
2i−1

]
10

we get S(bi ) = 1 and

Ai = Abi , 1 ≤ i ≤ m.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Basis

Definition (Basis of projective algebra in the plus approach)

Let b be a binary variable with n digits, {Pb} with S(b) = 1 a
set of n basis 1-vectors from Λ1+

n and 1+ ∈ Λ0+
n \ {0} a vector

of grade 0. Then the homogeneous multivectors

Pb =


1+, S(b) = 0,

S(b)∧
l=1

P bl
, 0 < S(b) ≤ n,

form a basis for the 2n-dimensional vector space of projective
algebra Λn.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Basis

Definition (Basis of projective algebra in the minus approach)

Let b be a binary variable with n digits, {Eb} with S(b) = 1 a
set of n basis 1-vectors from Λ1−

n and 1− ∈ Λ0−
n \ {0} a vector

of grade 0. Then the homogeneous multivectors

Eb =


1−, S(b) = 0,

S(b)∨
l=1

E bl
, 0 < S(b) ≤ n,

form a basis for the 2n-dimensional vector space of projective
algebra Λn.

Notation for the basis, if the expression is true in both
approaches: {Bb}, i. e. {B+

b } = {Pb} and {B−b } = {Eb}.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Transformation of the Basis

For the basis transformations

Eb =
∑

S(c)=n−k

ζbcPc, 0 ≤ S(b) = k ≤ n,

Pb =
∑

S(c)=n−k

ζ−1
bc Ec,

we get with S(b) = S(d) = k∑
S(c)=n−k

ζbcζ
−1
cd =

∑
S(c)=n−k

ζ−1
bc ζcd = δbd

where δbd is the Kronecker-delta-symbol,

δbd :=

{
1, b = d,
0, b 6= d.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Coefficients αbc

Theorem

Let b, c,d and e be binary n-digit numbers with d = b AND c
and e = b XOR c. Then we have

Bb ♦ Bc =

{
αbcBe S(d) = 0
0 S(d) 6= 0

where

αbc = (−1)
∑n−1

l=1 bl
∑l−1

m=0 cm = (−1)
∑n−2

l=0 cl
∑n−1

m=l+1 bm .

αbcαcb = (−1)S(b)S(c) for S(b AND c) = 0,

Xr ♦ Ys = (−1)rs · Ys ♦ Xr .

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Harmonic Model

The harmonic model of the projective Algebra Λn is given by

Eb = αbbPb, 0 ≤ S(b) ≤ n,

Pb = αbbEb,

with

αbb = (−1)
∑n−2

l=0 bl
∑n−1

m=l+1 bm = (−1)
∑n−1

l=1 bl
∑l−1

m=0 bm ,

αbb = (−1)k(n−k)αbb.

We then get with X+
k

=
∑

S(b)=k µbPb, Y−
k

=
∑

S(b)=k νbEb

and 0 < k < n

X+
k
∧ Y−

k
=

 ∑
S(b)=k

µbνb

 I+, X+
k
∨ Y−

k
=

 ∑
S(b)=k

µbνb

 I−.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Transition to Double GCA

Define two symmetric bilinear forms, one in the plus, the other
in the minus approach of projective algebra Λn.

B : Λ1
n ⊗ Λ1

n −→ Λ0
n

( X , Y ) 7−→ B(X ,Y ) = B(Y ,X )

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Transition to Double GCA

Definition (Geometric products)

Let Λn be a projective F-algebra and B+/B− a symmetric bilinear
form in the plus/minus approach. We call the operations

Λn × Λn −→ Λn

(A,B) 7−→ AB
Λn × Λn

∗−→ Λn

(A,B) 7−→ A ∗ B

major geometric product (no sign) and minor geometric product (∗).
They obey the following conditions:

The geometric products are associative and distributive.

For all scalars X0 the geometric product is the same as the
scalar multiplication.

Contraction rule for all 1-vectors.

For an orthogonal system S = {X1,X2, . . . ,Xm} ⊂ Λ1
n the

geometric and outer products are the same.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Transition to Double GCA

Contraction rule:

X+
1
X+

1
= B+(X+

1
, X+

1
) ∈ Λ0+

n ∀ X+
1
∈ Λ1+

n (+, ·)

X−
1
∗ X−

1
= B−(X−

1
, X−

1
) ∈ Λ0−

n ∀ X−
1
∈ Λ1−

n (+, ·)

Orthogonal system S = {X1,X2, . . . ,Xm} ⊂ Λ1
n:

m∏
l=1

Xl =
m∧
l=1

Xl ⇐⇒
{
S+ is a orthogonal system with
respect to the bilinear form B+.

m∗
l=1

Xl =
m∨
l=1

Xl ⇐⇒
{
S− is a orthogonal system with
respect to the bilinear form B−.

Oliver Conradt Projective Algebra Λn
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Projective Algebra: Proposal to Discuss

geometric algebras

︷ ︸︸ ︷
projective algebra ←→ metric algebra
Λn(+, ,∧,∨) Gn(+, , , ∗)

(double Graßmann) double Clifford

GPA GCA

Oliver Conradt Projective Algebra Λn
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Projective Geometry: Equivalence Relation

Definition (Equivalence relation)

Two multivectors A and B of the projective F-algebra Λn are
called equivalent, if and only if A and B differ in the number
ξ ∈ F \ {0},

A ' B :⇐⇒ A = ξB.

Oliver Conradt Projective Algebra Λn
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Projective Geometry: Axioms I

Let Λn(+, ·,∧,∨) be a projective F-algebra. The projective
geometry of dimension 2n is determined by the following
axioms:

(A1) Elements of projective geometry.

a) There are n + 1 different types of basic
elements. Each type is represented by the
homogeneous multivectors Xk̄ of one of the
der n + 1 different vector subspaces Λk

n .
b) A multivector M of the vector space Λn(+, )

represents an element, i. e. in general of each
type of basic element exactly one.

M =
n∑

k=0

〈M〉k .

Oliver Conradt Projective Algebra Λn
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Projective Geometry: Axioms II

c) Equivalent multivectors represent the same
geometric locus.

(A2) Incidence relation. Two elements A und B are incident if
and only if the corresponding multivectors A and
B meet the conditions

A ∧ B = 0 and A ∨ B = 0.

(A3) Intersection and connection. The geometric operation of
connection corresponds to the major outer
product (∧), the geometric operation of
intersection to the minor outer product (∨).

Oliver Conradt Projective Algebra Λn
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Real, Complex or Finite Projective Geometry

Definition

Depending on the filed F of the projective F-algbera Λn we have

F = R → real projective geometry,

F = C → complex projective geometry,

finite F → finite projective geometry.

Oliver Conradt Projective Algebra Λn
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Projective Geometry: Principle of Duality

Space Λ+
n Counterspace Λ−n

X+
k
↔ X−

k
∧ ↔ ∨
∨ ↔ ∧

A ∧ B = 0
and

A ∨ B = 0

 ↔


A ∨ B = 0
and
A ∧ B = 0

Table: Principle of duality in projective geometry of dimension 2n.

Oliver Conradt Projective Algebra Λn
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Proj. Geometry: Primitive Geometric Forms I

Definition (k-primitive geometric forms of grade m)

Let X±i = 〈Xi 〉±k denote m + 1 linear independent k-vectors
with 1 ≤ i ≤ m + 1 ≤

(n
k

)
and 0 ≤ k ≤ n. Then the k-primitive

form is given by

X =
m+1∑
i=1

ξiXi (ξ1, . . . , ξm+1) ∈ F \ {0}

Examples in Λ4 (n=4) with

Λ0+
4 → space of planes as a whole

Λ1+
4 → all points of space

Λ2+
4 → all linear complexes of space

Oliver Conradt Projective Algebra Λn
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Proj. Geometry: Primitive Geometric Forms II

Λ3+
4 → all planes of space

Λ4+
4 → space of points as a whole

Primitive geometric forms:

k = 1, m = 1 → X =
∑2

i=1 ξi 〈Xi 〉+1 pencil of points

X1

X2X

k = 1, m = 2 → X =
∑3

i=1 ξi 〈Xi 〉+1 field of points

X1

X2

X3

X

Oliver Conradt Projective Algebra Λn
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Proj. Geometry: Primitive Geometric Forms III

k = 1, m = 3 → X =
∑4

i=1 ξi 〈Xi 〉+1 space of points
X4

X2

X1

X3

X

k = 2, m = 1 → X =
∑2

i=1 ξi 〈Xi 〉+2 pencil of complexes

k = 2, m = 2 → X =
∑3

i=1 ξi 〈Xi 〉+2 bundle of complexes

k = 2, m = 3 → X =
∑4

i=1 ξi 〈Xi 〉+2 3-manifold of compl.

k = 2, m = 4 → X =
∑5

i=1 ξi 〈Xi 〉+2 4-manifold of compl.

k = 2, m = 5 → X =
∑6

i=1 ξi 〈Xi 〉+2 space of complexes

Oliver Conradt Projective Algebra Λn
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Proj. Geometry: Primitive Geometric Forms IV

k = 3, m = 1 → X =
∑2

i=1 ξi 〈Xi 〉+3 pencil of planes

k = 3, m = 2 → X =
∑3

i=1 ξi 〈Xi 〉+3 bundle of planes

k = 3, m = 3 → X =
∑4

i=1 ξi 〈Xi 〉+3 space of planes
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Projective Geometry: Linear Complex

Linear complex: k = β0011P0011 + β1100P1100

P1000

P0100

P1100

P0010

P0011

P0001

k ∧ k = 2β0011β1100P1111

= 0
⇔ β0011 = 0 or β1100 = 0

X1 =
∑

S(b)=1 γbPb 6= 0

X1 ∧ k 6= 0

null polarity

φ(X1) := X1 ∧ k

incident point-plane-pair

φ(X1) ∧ X1 = 0
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Projective Geometry: Cross Ratio

Definition (Cross Ratio)

Four different basic elements

A = 〈A〉k , B = 〈B〉k , C = 〈C 〉k , D = 〈D〉k ,

of a k-primitive geometric form of first grade with

γC = A + λB and δD = A + µB

form the cross ratio

DV (AB CD) :=
λ

µ
.

Ti = λiX + µiY → DV (T1T2 T3T4) =

(
λ1µ3−µ1λ3
λ2µ3−µ2λ3

)
(

λ1µ4−µ1λ4
λ2µ4−µ2λ4

)
i ∈ {1, 2, 3, 4}
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Projective Geometry: Collineation I

A collineation is a linear mapping

Φ : Λn → Λn

Xk 7→ 〈Φ(Xk)〉k

with

Φ(A ∧ B) = Φ(A) ∧ Φ(B).

It is determined by n + 1 pairs of 1-vectors (fundamental
theorem of projective geometry) and—up to the factor
det Φ—preserves the minor outer product too,

detφ · Φ(A ∨ B) = Φ(A) ∨ Φ(B).
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Projective Geometry: Collineation II

Examples in Λ4:

Homology Φ1: Let Z1 = P0001 be the fixed point,
Z3 = P1110 the point wise fixed plane. Z1 and Z3 are not
incident, i. e. Z1 ∧ Z3 6= 0. And let

A = P0001 + λP0010 7→ Φ1(A) = P0001 + µP0010

be a point-pair related by Φ1. Then we have

Φ1(P0001) = λP0001

Φ1(Pb) = µPb for S(b) = 1 and b 6= 0001

or

X1 =
∑

S(b)=1

γbPb 7→ Φ1(X1) = γ0001(λ− µ)Z1 + µX1.
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Projective Geometry: Collineation III

Elation Φ2: Let Z1 = P0001 be the fixed point, Z3 = P0111

the point wise fixed plane. Z1 and Z3 are incident, i. e.
Z1 ∧ Z3 = 0. And let

A = P1000 7→ Φ2(A) = P0001 + λP1000

be a point-pair related by Φ2. Then we get

Φ2(Pb) = λPb for S(b) = 1 and b 6= 1000

Φ2(P1000) = P0001 + λP1000

or

X1 =
∑

S(b)=1

γbPb 7→ Φ2(X1) = γ1000Z1 + λX1.
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Conclusion

Definition of projective algebra Λn as a double Graßmann
algebra but with the scalars as zero divisors.

Introduction of binary indices

Transition from projective to geometric algebra by
introducing two geometric products in Λn

Definition of projective geometry.

All grades represent a geometric object. In projective
geometry we use the whole structure of Λn.

The projective principle of duality is reflected by the
structure of a double algebra where the two algebras are
isomorphic.
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