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Definition of Λn I

A unity free exterior double F-algebra Λn(+, ·,∧,∨), or short
exterior double algebra, is a set Λn with four operations:

Λn × Λn
+−→ Λn

(A,B) 7−→ A+ B

F× Λn
·−→ Λn

(α,A) 7−→ α · A (2.1)

Λn × Λn
∧−→ Λn

(A,B) 7−→ A ∧ B
Λn × Λn

∨−→ Λn

(A,B) 7−→ A ∨ B
(2.2)

The operations are called addition (+), scalar multiplication (no
sign or ·), major exterior product (∧) and minor exterior product
(∨). The obey the following conditions:

(P1)F is a field with char(F) ̸= 2.
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Definition of Λn II

(P2)Λn(+, ·) is a complementary graded F-vector space of
dimension 2n

Λn(+, ·) =
n⊕

k=0

Λk+
n (+, ·) =

n⊕

k=0

Λk−
n (+, ·), k, n ∈ N,

(2.3)

with the dimensions

dim
(
Λk
n(+, ·)

)
=

(
n

k

)
, 0 ≤ k ≤ n, (2.4)

for the subspaces.
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Definition of Λn III

(P3)Λn(+, ·,∧) and Λn(+, ·,∨) are two associative F-algebras
without identity element. In addition, both exterior products
live up to the requirements:

• All scalars X0 ∈ Λ0
n(+, ·) are left and right zero divisors,

X+
0
∧M = M ∧ X+

0
= 0, ∀ M ∈ Λn(+, ·), (2.5)

X−
0

∨M = M ∨ X−
0

= 0, ∀ M ∈ Λn(+, ·). (2.6)
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Definition of Λn IV

• Exterior products between homogeneous multi vectors add the
grades,

A+
r ∧ B+

s = ⟨A+
r ∧ B+

s ⟩+r+s , r + s ≤ n, (2.7)

A−
r ∨ B−

s = ⟨A−
r ∨ B−

s ⟩−r+s , r + s ≤ n. (2.8)
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Definition of Λn V

• For 1-vectors Ai ∈ Λ1+
n or Bi ∈ Λ1−

n we have with l > 1

l∧

i=1

Ai = 0 ⇐⇒
{

A1, A2, . . . , Al are
linearly dependent.

(2.9)

l∨

i=1

Bi = 0 ⇐⇒
{

B1, B2, . . . , Bl are
linearly dependent.

(2.10)
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Difference to Graßmann Algebras

There is no difference between the algebras Λn(+, ·,∧), Λn(+, ·,∨)
and

∧
V inasmuch as they are all associative, graded,

antisymmetric and inasmuch as they have the same dimensions on
the level of the whole algebra as well as on the level of their direct
subspaces. The difference between the algebras Λn(+, ·,∧),
Λn(+, ·,∨) and ∧

V is that there is no identity element present in
the unity free exterior algebras Λn(+, ·,∧), Λn(+, ·,∨) — all scalars
are zero divisors — and the Graßmann algebra

∧
V is unital.
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Projective Algebra Λn

Since projective geometry Pn is going to be defined in terms of the
unity free exterior double F-algebra Λn(+, ·,∧,∨) we will call the
latter from now on shorter as projective algebra or projective
F-algebra Λn(+, ·,∧,∨).
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Equivalence Relation and Equivalence
Class

Two multi vectors A and B of a projective F-algebra Λn are called
equivalent, if and only if their homogeneous parts ⟨A⟩k and ⟨B⟩k
differ each in a non zero number ξk ∈ F \ {0} for all k-vector parts,

A ≃ B :⇐⇒ ⟨A⟩k = ξk⟨B⟩k ∀k ∈ {0, 1, . . . , n}. (4.1)

The corresponding equivalence class to a multi vector A is denoted
by [A].
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Axioms for Projective Geometry Pn I

Let Λn(+, ·,∧,∨) be a projective F-algebra. Projective geometry
Pn of dimension 2n is determined in terms of projective algebra Λn

by the following axioms:

(A1)Elements of projective geometry.

(a) There are n+ 1 different types of basic elements corresponding
to the n + 1 different vector subspaces Λk

n of projective algebra
Λn. The basic elements of a certain type (called k-elements)
are represented by the homogeneous multi vectors Xk̄ of one of
the n + 1 different vector subspaces Λk

n .
(b) A multi vector M of the vector space Λn(+, ) represents an

element, i. e. in general of each type of basic element exactly
one,

M =
n∑

k=0

⟨M⟩k . (4.2)
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Axioms for Projective Geometry Pn II

(c) Equivalent multi vectors represent the same element, i.e. all
multi vectors X ∈ [A] represent the same element as A does.

(A2)Incidence relation. Two elements [A] und [B] are incident if
and only if their corresponding homogeneous parts ⟨A⟩k and
⟨B⟩l meet the conditions

⟨A⟩k ∧ ⟨B⟩l = 0,
⟨A⟩k ∨ ⟨B⟩l = 0,

}
∀ k , l ∈ {0, 1, . . . , n}. (4.3)

(A3)Intersection and connection. The geometric operation of
connection corresponds to the major outer product (∧), the
geometric operation of intersection to the minor outer product
(∨).
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Cross ratio I

Definition (cross ratio)

Four different basic elements

A = ⟨A⟩k , B = ⟨B⟩k , C = ⟨C ⟩k , D = ⟨D⟩k , (4.4)

of a k-primitive geometric form with

γC = A+ λB and δD = A+ µB (4.5)

form the cross ratio

CR(AB CD) :=
λ

µ
. (4.6)

With respect to the cross ratio, the basic elements A and B are
called base elements, the basic elements C and D dividing
elements.
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Cross ratio II
In order to show, that the cross ratio is well defined and does not
depend on the weight factors of the basic elements A, B, C and D,
we replace the latter by

A = α′A′, B = β′B ′, C = γ′C ′, D = δ′D ′ (4.7)

with α′, β′, γ′, δ′ ∈ F \ {0}. Inserting the expressions of equation
(4.7) into equation (4.5),

γγ′C ′ = α′A′ + λβ′B ′, δδ′D ′ = α′A′ + µβ′B ′, (4.8)

and dividing by α′,

γγ′

α′ C
′ = A′ + λ

β′

α′B
′,

δδ′

α′ D
′ = A′ + µ

β′

α′B
′, (4.9)

we get

CR(A′B ′ C ′D ′) =
λ

µ
= CR(AB CD). (4.10)
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Cross ratio III

Let

CR(AB CD) =
λ

µ
=: σ (4.11)

denote the cross ratio of the four different basic elements A,B,C
and D according to Definition 4.1. We then have

CR(AB CD) = σ CR(AB DC ) =
1

σ
(4.12)

CR(AC DB) =
1

1− σ
CR(AC BD) = 1− σ (4.13)

CR(AD BC ) =
σ − 1

σ
CR(AD CB) =

σ

σ − 1
(4.14)
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Cross ratio IV

CR(BC DA) =
σ

σ − 1
CR(BC AD) =

σ − 1

σ
(4.15)

CR(BD AC ) = 1− σ CR(BD CA) =
1

1− σ
(4.16)

CR(BACD) =
1

σ
CR(BACD) = σ (4.17)

CR(CD AB) = σ CR(CD BA) =
1

σ
(4.18)

CR(CABD) =
1

1− σ
CR(CADB) = 1− σ (4.19)

CR(CB DA) =
σ − 1

σ
CR(CB AD) =

σ

σ − 1
(4.20)
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Cross ratio V

CR(DABC ) =
σ

σ − 1
CR(DABC ) =

σ − 1

σ
(4.21)

CR(DB CA) = 1− σ CR(DB AC ) =
1

1− σ
(4.22)

CR(DC AB) =
1

σ
CR(DC BA) = σ (4.23)

We will first proof the cross ratios
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Cross ratio VI

CR(AB DC ), CR(AC DB) and CR(BC DA). (4.24)

CR(AB DC ): The switch of the two dividing elements follows
directly from Definition 4.1,

CR(AB DC ) =
1

CR(AB CD)
. (4.25)

CR(AC DB): We have to determine the dividing elements D and
B in terms of the two base elements A and C . From equations
(4.5) we get

δλ

(λ− µ)
D = A+

γµ

(λ− µ)
C and −λB = A− γC . (4.26)
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Cross ratio VII

The corresponding cross ratio then is

CR(AC DB) =
γµ

(λ− µ)
·
(
−1

γ

)
=

µ

µ− λ
=

1

1− σ
(4.27)

=
1

1− CR(AB CD)
.

CR(BC DA): We have to determine the dividing elements D and A
in terms of the two base elements B and C . From equations (4.5)
we get

δ

(µ− λ)
D = B +

γ

(µ− λ)
C and − 1

λ
A = B − γ

λ
C . (4.28)
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Cross ratio VIII

The corresponding cross ratio then is

CR(BC DA) =
γ

(µ− λ)
·
(
−λ

γ

)
=

λ

λ− µ
=

σ

σ − 1
(4.29)

=
CR(AB CD)

CR(AB CD)− 1
.

With respect to the initial cross ratio CR(AB CD), the three
permutations of equation (4.24) generate the remaining 20
permutations.
The 24 permutations of how the cross ratio for four fixed basic
elements can be formed end up in at maximum six different
numbers. In case of the harmonic cross ratio σ = −1, which will
be looked at into more detail in the two examples at the end of
this subsection, the six values collapse into three: −1, 1

2 and 2.



Goetheanum MAS

Cross ratio IX

The cross ratio of four different basic elements

Ti = λiX + µiY , i ∈ {1, 2, 3, 4}, (4.30)

of a k-primitive geometric form is given by

CR (T1T2 T3T4) =

(
λ1µ3−µ1λ3
λ2µ3−µ2λ3

)

(
λ1µ4−µ1λ4
λ2µ4−µ2λ4

) . (4.31)
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Cross ratio X

Figure: Two four-points QRPW and Q ′R ′P ′W ′ sharing the same
harmonic set of points AB CC1. This drawing is a copy of Figure 155

from Locher, Projektive Geometrie.
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Cross ratio XI

Let us compute the cross ratio of the harmonic point-set AB CC1.
For this we choose

A := P001, B := P010, Q := P100, (4.32)

P := P001 + P010 + P100.

Solutions:

C ≃ A+ B = P001 + P010 (4.33)

W ≃ B + Q = P010 + P100, R ≃ A+ Q = P001 + P100, (4.34)

C1 ≃ A− B = P001 − P010. (4.35)

CR(AB CC1) = −1. (4.36)
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Poncelet Porism I Das Theorem von
Poncelet

Die Sätze von
Pascal, Carnot und
Brianchon

Poncelet für
Dreiecke

Allgemeiner Fall

Eine Folgerung

Das Theorem von Poncelet

P

K

C
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Poncelet Porism II

22 Chapter 2. Billiards – First Examples

Take A to be an arbitrary point on K1 and construct B, C, D ∈ K1 such that
AC ∩BD = P , AC ⊥ BD. Denote by K, L, M, N the normal projections of P to
the sides of ABCD. By Lemmata 2.11 and 2.12, KLMN is circumscribed about
k. By Lemma 2.13, KLMN is also inscribed in a circle with center O and radius
equal to 1

2


2R2

1 − d2
1. Eliminating r from (2.2) and (2.3), we obtain that this is

equal to R.

Thus, we constructed a quadrilateral KLMN inscribed in K and circum-
scribed about k. In the construction, choosing arbitrarily the initial point A on
K1, we can get that any point on K can be a vertex of such a quadrilateral.

2.6 Poncelet theorem

In this section, we are going to state the Poncelet theorem and give its mechanical
interpretation. The proof of the theorem will be given at the end of Chapter 4 and
in Chapter 5.

Poncelet theorem

As we already mentioned, the Poncelet theorem is one of the most beautiful and
deepest theorems of geometry, with numerous consequences and interrelations in
a wide range of areas of mathematics. It was proved by Jean Victor Poncelet,
while he was imprisoned in Russia, in 1813. He published another proof in 1822
in [Pon1822].

Theorem 2.14 (Poncelet Theorem). Let C and D be two conics in the plane. Sup-
pose that there is a polygon inscribed in C and circumscribed about D. Then there
are infinitely many such polygons and all of them have the same number of sides.
Moreover, each point of C is a vertex of such a polygonal line.

Figure 2.15: Three triangles inscribed in an ellipse and circum-
scribed about the other one
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Poncelet Porism III

106 CHAPTER 10. DUAL MECHANICS
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Figure 10.1: The Figures on the left side show the intersection of the positive
ball K1 with middle-point qm = 0 and radius R = 1 (top) and the intersection
of the positive ball K2 with middle-point qm = 2ω1 and radius R = 1 (bottom).
The gray surface indicate the points belonging to the ball K1 or K2 respectively.
The Figures on the right side show the intersection of the negative ball k1 with
middle-plane pm = 0 and radius r = −1 (top) and the intersection of the
negative ball k2 with middle-plane pm = 2!1 and radius r = −1 (bottom).
The gray surfaces indicate the planes belonging to the ball k1 or k2 respectively.
The boundary of a negative ball takes on the form of the surface of a positive
ball, a positive hyperboloid, a positive paraboloid, or a positive ellipsoid. See
also Figure 10.2.
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Poncelet Porism IV

10.1. DUAL LAGRANGIAN AND DUAL HAMILTONIAN. . . 107
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Figure 10.2: This Figure shows the linear momentum-motion pc = !1 → E of a
negative ball with homogeneous mass distribution. The radius r = −1 remains
constant during the entire motion. The negative ball k1 belongs to the energy
E = 0, the ball k2 to the energy E = 0.5 −1, the ball k3 to the energy E = −1,
the ball k4 to the energy E = 1.5 −1, and the ball k5 to the energy E = 2 −1.
Except for the (in space) infinitely distant middle plane p1 = 0 of the negative
ball k1, all the middle planes pi are drawn. The numbers along the px- and the
py-lines indicate the counterspace-distance, and the numbers around the frame
indicate the respective space-distance.
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Poncelet Porism V

Notation:

P0101 =
2∧

l=1

P 0101l
= P0001 ∧ P0100 (4.37)

P1101 =
3∧

l=1

P 1101l
= P0001 ∧ P0100 ∧ P1000 (4.38)

E0111 =
3∨

l=1

E 0111l
= E0001 ∨ E0010 ∨ E0100 (4.39)

E1111 =
4∨

l=1

E 1111l
= E0001 ∨ E0010 ∨ E0100 ∨ E1000. (4.40)
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Poncelet Porism VI

Poncelet Theorem with a triangle:

outer conic section k ′ (4.41)

inner conic section k (4.42)

A = α001P001, B = β010P010, C ′ = γ′100P100 (4.43)

C =
∑

S(b)=1

γbPb, γ001γ010γ100 ̸= 0 (4.44)

a = A ∧ C ′ = α001γ
′
100P101 (4.45)

b = B ∧ C ′ = β010γ
′
100P110 (4.46)

c ′′ = A ∧ B = α001β010P011 (4.47)
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Poncelet Porism VII

k+ : X = λ2A+ µ2 B + λµC ′, α001 =
(γ′100)

2

β010

γ001γ010
(γ100)2

(4.48)

k− : x = λ2a− µ2 b + 2λµ c ′′ (4.49)

c ≃ 2P011 +
γ100
γ010

P101 −
γ100
γ001

P110 (4.50)

A′ = α′
010P010 + α′

100P100, α′
010α

′
100 ̸= 0 (4.51)

B ′ = β′
001P001 + β′

100P100, β′
100β

′
100 ̸= 0 (4.52)

with Brianchon aa bb cc

Z ≃ β′
001

β′
100

P001 +
α′
010

α′
100

P010 + P100 (4.53)
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Poncelet Porism VIII

a′′ = B ∧ C = β010(−γ001P011 + γ100P110) (4.54)

b′′ = C ∧ A = α001(−γ010P011 − γ100P101) (4.55)

c ′′ = A ∧ B = α001β010P011 (4.56)

with Pascal AABB CC

P ≃ a ∨ a′′ ≃ γ001
γ100

P001 + P100 (4.57)

Q ≃ b ∨ b′′ ≃ γ010
γ100

P010 + P100 (4.58)

R ≃ c ∨ c ′′ ≃ P001 −
γ010
γ001

P010, P ∧ Q ∧ R = 0 (4.59)

z = P ∧ Q

= γ001γ010P011 + γ001γ100P101 − γ010γ100P110 (4.60)
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Poncelet Porism IX

A′ ≃ γ010
γ100

P010 + P100 (4.61)

B ′ ≃ γ001
γ100

P001 + P100 (4.62)

A1 ≃ k ∨ (A ∧ A′)

≃ 1

4
γ001P001 + γ010P010 +

1

2
γ100P100 (4.63)

a1 ≃ tangent of k in A1

≃ γ001
γ100

P011 +
1

4

γ001
γ010

P101 − P110 (4.64)
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Poncelet Porism X

B1 ≃ k ∨ (B ∧ B ′)

≃ 2γ001P001 +
1

2
γ010P010 +

1

2
γ100P100 (4.65)

b1 ≃ tangent of k in B1

≃ 4
γ001
γ100

P011 + 4
γ001
γ010

P101 − P110 (4.66)

C1 ≃ k ∨ (C ∧ C ′)

≃ γ001P001 + γ010P010 − γ100P100 (4.67)

c1 ≃ tangent of k in B1

≃ −2
γ001
γ100

P011 +
γ001
γ010

P101 − P110 (4.68)

P ∧ a1 = 0, Q ∧ b1 = 0, Q ∧ c1 = 0 (4.69)

(Z , z) is with respect to k a pair of pol and polar line.
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Poncelet Porism XI

A′
1 ≃ b1 ∨ c1 ≃ −4γ001P001 + 2γ010P010 + γ100P100 (4.70)

B ′
1 ≃ c1 ∨ a1 ≃ 2γ001P001 − 4γ010P010 + γ100P100 (4.71)

C ′
1 ≃ a1 ∨ b1 ≃ 4γ001P001 + 4γ010P010 + 5γ100P100 (4.72)

A1 ∧ A ∧ A′ = 0, B1 ∧ B ∧ B ′ = 0, C1 ∧ C ∧ C ′ = 0

six angle A′C ′
1B

′A′
1C

′B ′
1 = k ′1

Q1 ≃ (A′ ∧ C ′
1) ∨ (A′

1 ∧ C ′) (4.73)

≃ 2γ001P001 − 2γ010P010 + γ100P100 (4.74)

≃ γ001
γ100

R + P, Q ≃ −γ001
γ100

R + P (4.75)
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Poncelet Porism XII

P1 ≃ (C ′
1 ∧ B ′) ∨ (C ′ ∧ B ′

1) (4.76)

≃ −γ001P001 + 2γ010P010 + γ100P100 (4.77)

≃ Q − γ001
γ100

R, P ≃ Q +
γ001
γ100

R (4.78)

R1 ≃ (B ′ ∧ A′
1) ∨ (B ′

1 ∧ A′) (4.79)

≃ γ001P001 + γ010P010 + 2γ100P100 (4.80)

≃ P + Q, R ≃ P − Q (4.81)
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