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This is the last article in a series of three, the previous ones being
- the handout of the conference in Holland of May 10-13, 2018, file ImTh2d20180326.pdf
- the handout of the conference in Dornach of October 19-21, 2018, file ImThKlein201810.pdf.
Parts of these will be repeated below.

Abstract A bijection is established between the projective plane as defined by Felix Klein,
and the numeric complex projective plane. By proving that the ordering relation is invariant
under this bijection, we show that the two planes are projectively equivalent.
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1 The four planes

1.1 The geometric real plane

Let be given the real projective plane S, with its collection of lines S1 and points S0. We add
two more elements to this plane, viz. the empty set ∅ and the whole plane P = P2. So

S = {∅} ∪ S0 ∪ S1 ∪ {P}
The function dim : S → {−1, 0, 1, 2} associates their dimension to the elements of the plane.
Points have dimension 0, lines 1, the whole plane 2 and the emptyset −1. Points are denoted
by upper case letters, lines by lower case ones. Also variables of S are denoted by lower case
letters, mostly from the end of the alphabet.

The incidence realtion ≺ is defined by: x ≺ y means x lies in y, or y contains x, and this is
also denoted by y � x. As usual we define the weaker relations � and �. These relations are
transitive. We also have

x ≺ y ⇒ dim(x) < dim(y)

For each element x ∈ S we have ∅ � x ≺ P.

Two distinct lines, l and m, have one point in common, denoted by lm or l∧m. Two distinct
points, A and B, determine one line, denoted by AB or A ∨ B. But meet (∧) and join (∨)
are defined for each pair of elements of S:

Definition 1.1 Let be given two elements x, y ∈ S. Their join x ∨ y is the smallest element
of S that contains them both. Their meet x ∧ y is the biggest element of S that is contained
in each.

Each pair of elements of S has exactly one join and one meet.

1.2 The numeric real projective plane

Formally the numeric real projective plane consists of two collections of homogeneous coor-
dinates

S ′0 = {(x : y : z)|x, y, z ∈ R}, S ′1 = {[x : y : z]|x, y, z ∈ R}
and as usual the empty set and the whole plane:

S ′ = {∅} ∪ S ′0 ∪ S ′1 ∪ {P}
In the above geometric plane S, take any four distinct points X, Y, Z, U in general position
(i.e. no three on a line). If we associate X with (1 : 0 : 0), Y with (0 : 1 : 0), Z with (0 : 0 : 1)
and U with (1 : 1 : 1), each point gets a unique set of homogeneous coordinates, and so do the
lines (see section 1.4). That is, for each quadruple X, Y, Z, U of points in general position we
have a coordinate map κ = κXY ZU that associates coordinates to points and lines. We will
identify S and S ′ as soon as there is a fixed system of reference. We will also add coordinates
to the minimal and maximal element:

∅ = (0 : 0 : 0), P = [0 : 0 : 0]

in any system of reference.
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1.3 The Klein-plane

The Klein-plane is an extension of the geometric plane S as defined in section 1.1.

Definition 1.2 An imaginary point is a projective map P : l → l with the following proper-
ties1:
- l is a line, or rather its collection of points
- P 6= 1l
- P 3 = 1l
An imaginary line is a projective map m : Q→ Q with the following properties:
- Q is a point, or rather the collection of lines through it
- m 6= 1l
- m3 = 1l

The collection of all imaginary points (lines) is denoted by T0 (T1), and T = T0 ∪ T1 is the
collection of all imaginary elements. The Klein-plane is the set U = S ∪ T .

Definition 1.3 The order relation in the Klein-plane.

a The imaginary point F : l→ l is said to lie on its real base line l. It is on no other real
line.

b An imaginary line g : P → P is said to go through its real base point P . It has no other
real points.

c If P is a point not on line l we say that the imaginary point F : l → l is on the
imaginary line g : P → P if and only if ∀X ≺ l : F (X)∨ P = g(X ∨ P ) or equivalently
∀x � P : g(x) ∧ l = F (x ∧ l).

Figure 1: imaginary point on imaginary line

d If P is on l, then for each imaginary point F : l→ l and each imaginary line g : P → P
holds: F is not on g.

1You should keep in mind that there is a whole cyclic group G of automorphisms of l that represents two
complex conjugated points on l. One ‘half’ of this group represents one imaginary point, the other half its
conjugated point.
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1.4 The numeric complex projective plane

A thorough introduction to numeric projective geometry is the book of Semple and Kneebone,
[SempleK1952]. The numeric approach starts with a vector space, in our case the space C3.
Numbers will be denoted by Greek letters, but coordinates will also be denoted by indexed
lowercase ones: P (p1 : p2 : p3). And as always i =

√
−1.

If P ∈ C3 \0 and λ is any non-zero complex number, then P and λP represent the same point
of the complex projective plane. Vectors are supposed to be vertical columns of numbers,
although in running sentences we will write them horizontal to save space. In formulas we
will write vτ for the – horizontal – transpose of v. The coordinates of points will have round
brackets, those of lines square ones. The symbol P2(C) will indicate the set of points together
with the set of lines. (In the literature it usually indicates only the set of points.) The real
projective space P2(R) is a subspace of it.

We take a fixed system of reference X(1 : 0 : 0), Y (0 : 1 : 0), Z(0 : 0 : 1) and U(1 : 1 : 1) for
the point set. The lines x = Y Z = [1 : 0 : 0], y = XZ = [0 : 1 : 0], z = XY = [0 : 0 : 1]
together with u = [1 : 1 : 1] must form a system of reference for the lines, and we wish that a
point P (P1 : P2 : P3) is on line l[l1 : l2 : l3] if and only if P τ l = lτP = P1l1 + P2l2 + P3l3 = 02.
This is established by defining u to be the line through (1 : −1 : 0), (1 : 0 : −1) and
(0 : 1 : −1). As before we define:

∅ = (0 : 0 : 0), P = [0 : 0 : 0]

This numeric projective plane has the comfortable property that join and meet are easy to
compute with the cross product. If x(x1 : x2 : x3) and y(y1 : y2 : y3) are either distinct points
or distinct lines, then the join of the points, as well as the meet of the lines is given by

x× y =

 x1
x2
x3

×
 y1

y2
y3

 =

 x2y3 − x3y2
−x1y3 + x3y1
x1y2 − x2y1


This holds for complex coordinates too. If the points (lines) coincide (that is, if the vectors
x, y are dependent), the cross product vanishes. A useful property of the cross product is
(x× y)τx = (x× y)τy = 0.

An important property of projective spaces is that projectivities are regular linear maps.
If T is a projective map with (point) matrix M , and that maps distinct points A and B to
the distinct points A′ = MA and B′ = MB respectively, then the line AB is mapped to A′B′,
although not by M but by line matrix (M τ )−1.
Proof. Let X be an arbitrary point on an arbitrary line l, i.e. lτX = 0. Then, using (M τ )−1 =
(M−1)τ and (xy)τ = yτxτ ,

((M τ )−1l)τ (MX) = (lτM−1)(MX) = lτX = 0 �
2 P τ l is not an inner product of vectors, but rather the mutual action of a vector P and a co-vector l. In

fact it is a matrix produt of a horizontal vector P and a vertical one l. See my Vector spaces and projective
geometry, [Boer2017].

5



As a consequence we have: if A and B are distinct points, and if M is a projective map, then
the line AB is mapped onto3 (M−1)τ (A×B) = MA×MB.

A warning may be appropriate. Let be given a line l with distinct points P,Q,R = λP + µQ
on it, and a fourth point S not on l, see figure 2. Let p = SP = S×P, q = SQ = S×Q, r =

Figure 2: coordinates in a perspectivity

SR = S × R. Then r = S × R = S × (λP + µQ) = λS × P + µS × Q = λp + µq. So, if a
range of points is perspective to a pencil of lines, then the local coordinates of a point equal
the local coordinates of its perspective line. But we should be careful with applying the cross
product. While A× B and B × A represent the same line, in the above formula’s they have
opposite signs. So if we should define q = Q × S, then the local coordinates of r = λp − µq
are (λ : −µ).

The real numerc projective plane, P2(R), is the subspace of P2(C) consisting of all elements
of which all coordinates are real (or can be made real by multiplying by a suitable complex
number).

2 Isomorphic spaces

The fundamental realation in projective geometry is that of order or incidence or containment,
for which the symbols �, ≺, �, � are used.

The operators ‘meet’ (∧) and ‘join’ (∨) are defined in terms of �:

Definition 2.1 Let S be a projective space of dimension 2 or more4. The meet a ∧ b of two
elements a, b ∈ S is the biggest element x of S for which holds x � a and x � b. Their join
a ∨ b is the smallest element y of S for which holds a � y and b � y.

Then we have for all a, b, x ∈ S:

(x � a AND x � b)⇒ x � a ∧ b
(x � a AND x � b)⇒ x � a ∨ b

3 Algebraically the formula is |M |(M−1)τ (A×B) = MA×MB.
4 S cointains points, lines etc., and also the emptyset and the whole space.
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In addition we have for all a, b ∈ S:

a = a ∧ b ⇔ a � b ⇔ a ∨ b = b

The rest of this section duplicates a part of [Boer2009].

Definition 2.2 Let be given two projective spaces S, S ′ of dimension 2 or more. A map
f : S → S ′ is called a homomorphism if for every a, b ∈ S:

f(a ∨ b) = f(a) ∨′ f(b)

and
f(a ∧ b) = f(a) ∧′ f(b)

Unless confusion is likely we will omit the primes after the symbols �,∧ and ∨.

Proposition 2.3 Each homomorphism is order preserving.

Proof. a � b⇒ a ∧ b = a⇒ f(a) ∧ f(b) = f(a ∧ b) = f(a)⇒ f(a) � f(b). �

The converse of proposition 2.3 is not true: not every order preserving map is a homo-
morphism.

Proposition 2.4 If f is a bijective homomorphism, then so is f−1. �

Definition 2.5 An isomorphism is a bijective homomorphism5. The spaces S and S ′ are
called isomorphic if there exists an isomorphism between them.

Proposition 2.6 A map f : S → S ′ is an isomorphism if and only if it is bijective and for
every a, b ∈ S:

a � b ⇔ f(a) � f(b)

Proof. We owe this proof to Jacobson, see [Jacobson1951]. If f is an isomorphism then both f and

f−1 are bijective homomorphisms and hence order preserving. This proves half of the statement.

Conversely let f be bijective and for every a, b ∈ S : a � b ⇔ f(a) � f(b). Since a ∧ b � a and

a ∧ b � b, also f(a ∧ b) � f(a) and f(a ∧ b) � f(b), hence f(a ∧ b) � f(a) ∧ f(b). Now let x ∈ S′ be

a lower bound of f(a) and f(b), so x � f(a) ∧ f(b), and let y = f−1(x). Clearly y � a, y � b and

y � a ∧ b. Then again x � f(a ∧ b) which means that f(a ∧ b) is greatest lower bound of f(a) and

f(b), hence equal f(a) ∧ f(b). Analogous for ∨. �

Proposition 2.7 A map f : S → S ′ is an isomorphism if and only if it is bijective and for
every a, b ∈ S : a ≺ b ⇔ f(a) ≺ f(b). �

Of course the inverse of an isomorphism is again an isomorphism.

5 Isomorphisms are semi-linear maps. The cross ratio fails to be always invariant under isomorphisms.
Therefore in the literature projective maps are usually defined as linear maps. These do leave the cross ratio
invariant. If the ground field is R - or any other field with no non-trivial automorphisms - these definitions
coincide, else they differ. If for instance the field is C, then there are many non-trivial automorphisms, among
them complex conjugation. So, complex conjugation is an automorphism, but not a projective map.
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3 The isomorphism

We constructed a new plane, the Klein-plane, that was ment to be a projective plane over
the complex numbers. Without proof we state that it is a projective plane. We will, however,
establish a bijection to the numeric plane. Then we get tools to associate coordinates to the
newly introduced imaginary elements, which is of great practical use.

3.1 The coordinate map κ

So we want to assign complex coordinates to the imaginary points and lines of the Klein-plane,
and verify that the order relation ≺ is kept by that assignment. We can, however, presume
an isomorphism κ between the real elements S and the real part P2(R) of the numeric plane.
So, in our Klein-plane we have a real system of reference XY ZU as described in section 1.4,
and κ simply assigns the real coordinates to real points and real lines.

On the line XY = [0 : 0 : 1] we define a map Pi that moves the point X(1 : 0 : 0) to
I1(−1 :

√
3 : 0), I1 to I2(1 :

√
3 : 0) and I2 to X. If we drop the third coordinate we find

that the matrix of Pi is (1,−
√

3;
√

3, 1). It has eigenvecotrs (±i : 1) and we will associate Pi
with (i : 1). Then it is only natural to associate the plane coordinates κ(Pi) = (i : 1 : 0) to
Pi, and κ(P i) = (−i : 1 : 0) to P i. Remember that for any non-zero complex number λ, also
(λi : λ : 0) are homogeneous coordinates of Pi.

Figure 3: the fundamental imaginary line

Dually, in the point Z(0 : 0 : 1) we observe the lines ZX[0 : 1 : 0], ZI1[−
√

3 : −1 : 0] and
ZI2[−

√
3 : 1 : 0] (see the warning at the end of section 1.4). Define the imaginary line li

to be the Klein-map by li(ZX) = ZI1 and li(ZI1) = ZI2. Dropping each third coordinate
it has the same matrix as Pi so we define κ(li) = [i : 1 : 0]. Observe that Pi ≺ li and that
κ(li)

τκ(Pi) = 0 indeed. Thus we fixed one imaginary line and one imaginary point on this
line. They are the fundamental imaginary elements of the plane with respect to the system
of reference XY ZU .

Next take an arbitrary imaginary point F : l → l. Let P,Q,R be distinct points of l and
F (P ) = Q, F (Q) = R. There are many projectivities of the plane that map X to P , I1 to
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Q and I2 to R. Let M be any such regular real projective map. We would like to assign the
coordinates MPi = M(i : 1 : 0)τ to F . But then the question arises, if N is a second matrix
that moves X to P , I1 to Q and I2 to R, is then NPi a – possibly complex – multiple of MPi?
The answer is yes, and that is a consequence of the following proposition.

Proposition 3.1 In the real projective plane let be given the line l and three distinct points
P,Q,R on it. Let F = FPQR be the imaginary point represented by P,Q,R. Let M,N be
regular real projective maps, each mapping X, I1, I2 to P,Q,R respectively. Then there is
non-zero real number α such that M(i : 1 : 0)τ = αN(i : 1 : 0)τ .

Proof. Since P,Q,R are distinct there is a non-zero real number ρ such that R = ρP + Q. Let
M = (mjk) = (M0,M1,M2) where the Mj are the column vectors of M . Then we have

MX = (M0,M1,M2)(1 : 0 : 0)τ = M0 = λP, λ ∈ R∗

and
MI1 = (λP,M1,M2)(−1 :

√
3 : 0)τ = −λP +M1

√
3 = µQ, µ ∈ R∗

hence M1 = (λP + µQ)/
√

3. Then

MI2 = (λP, λP+µQ√
3

,M2)(1 :
√

3 : 0)τ = λP + λP + µQ =

= 2λP + µQ = η(ρP +Q), η ∈ R∗

or 2λP + µQ = ρηP + ηQ. Since P and Q are independent vectors, we have 2λ = ρη and µ = η =
2λ/ρ. Now our matrix is

M = (λP,
λρP + 2λQ

ρ
√

3
,M2)

and

M(i : 1 : 0)τ = λiP +
λρP + 2λQ

ρ
√

3
= λ(iρ

√
3P + ρP + 2Q)

This is independent of the Mj . In a similar way we find N(i : 1 : 0)τ = λ′(iρ
√

3P + ρP + 2Q). If

now we take α = λ/λ′ the proof is complete. �

Thus, given the distinct points P,Q and R = ρP +Q on one line l we define

κ(FPQR) = ρ(1 + i
√

3)P + 2Q = (ρP + 2Q) + iρ
√

3P (1)

For imaginary lines we have a similar procedure, with slightly different results. Let l, m and
n = ρl + m be real lines and let g = glmn. M = [M0,M1,M2] is the matrix that maps line
ZX onto l, ZI1 onto m and ZI2 onto n. Then we have

M(ZX) = [M0,M1,M2][0 : 1 : 0]τ = M1 = λl

M(ZI1) = [M0, λl,M2][−
√

3 : −1 : 0]τ = −M0

√
3− λl = µm

hence M0 = (−λl − µm)/
√

3.

M(ZI2) = [(−λl − µm)/
√

3, λl,M2][−
√

3 : 1 : 0]τ =
= 2λl + µm = ν(ρl +m)
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This gives µ = ν = 2λ/ρ and

M(li) = [(−λl − 2λm/ρ)/
√

3, λl,M2][i : 1 : 0]τ =

= − λ
ρ
√
3
((ρl + 2mi) + l

√
3)

Thus we find
κ(g) = (ρ

√
3)l − (ρl + 2m)i = ρ(

√
3− i)l − 2mi (2)

3.2 Consistency

We will now prove that, given two pairs of points on an imaginary line, each will lead to the
same set of coordinates for that line.

In the real projective plane let be given the lines m and n with meeting point S and a
point P neither on m nor on n, see figure 4. Let x = PS and let y, y′ be distinct lines through
P but not through S. Define Q = y ∧ m, R = y ∧ n, Q′ = y′ ∧ m and R′ = y′ ∧ n. Let
F = FSQQ′ and G = GSRR′ be imaginary points and l = lxyy′ an imaginary line.

We will prove that κ(P ∨ F ) = κ(F ∨G).

Figure 4: consistency

Let V be an arbitrary point on y′ but not on any of the other four lines. Let M be the coordi-
nate transformation that changes the system of reference from XY ZU to PQSV . Then after
applying M we have the following coordinates: P (1 : 0 : 0), Q(0 : 1 : 0), S(0 : 0 : 1), m[1 :
0 : 0], x = P × S = [0 : −1 : 0], y = P × Q = [0 : 0 : 1], y′ = P × V = [0 : 1 : −1]. Take
R(ρ : 1 : 0) and verify that it is on y. Then n = [1 : −ρ : 0], R = (ρ : 1 : 1), Q′ = (0 : 1 : 1)

Now we see that Q′ = S + Q, R′ = S + R and y′ = x + y. From section 3.1 we know
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that

κ(FSQQ′) = (1 + i
√

3)S + 2Q =

 0
2

1 + i
√

3


and

κ(GSRR′) = (1 + i
√

3)S + 2R =

 2ρ
2

1 + i
√

3


so

P × FSQQ′ = P ×GSRR′ =

 0

−1− i
√

3
2


FSQQ′ ×GSRR′ =

 0

2ρ(1 + i
√

3)
−4ρ

 =

 0

−(1 + i
√

3)
2


So, each pair of points of l gives the same value of κ(l). That implies that for each (real or
imaginary) point H of l we have (κ(l))τκ(H) = 0.

If we go back to the original coordinates by applying M−1 to the points, and M τ to l,
we get

M−1H ×M−1H ′ = M τ (H ×H ′)

Since the right part is independent of the points H,H ′ on l, so is the left part.

3.3 The inverse of κ

Given an imaginary point Z(a0 + b0i : a1 + b1i : a2 + b2i) = A+ iB with A and B real, what is
the Klein-map that has these coordinates? First observe that Z = (a0−b0i : a1−b1i : a2−b2i)
is on the same real line l as Z. But also the real and imaginary parts, A(a0 : a1 : a2) and
B(b0 : b1 : b2) are on l. (Observe that by hypothesis neither one can be the zero vector! For
if B = 0 then Z is real. But if A = 0 then Z = iB = B, hence real too.) So the coordinates
of l are simply those of A × B. Now every real point of l can be written as λA + µB, with
λ, µ real and not both 0. Next, take three distinct real points P = A, Q = λA + B and
R = µA + B, λ 6= µ on l. From this follows R = (µ − λ)P + Q = ρP + Q, ρ = µ − λ.
There exixts a map M that moves X, I1, I2 onto P,Q,R respectively and the coordinates of
the imaginary point F = FPQR are by equation (1):

κ(FPQR) = ρ(1 + i
√

3)P + 2Q = (µ− λ)(1 + i
√

3)A+ 2(λA+B)

And this result must equal (a multiple of) the coordinates of Z:

(µ− λ)(1 + i
√

3)A+ 2(λA+B) = (γ + δi)(A+ iB), γ, δ ∈ R(
(µ− λ) + i(µ− λ)

√
3 + 2λ

)
A+ 2B = (γ + δi)(A+ iB)
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Since A and B are independent we must have

µ+ λ+ i(µ− λ)
√

3 = γ + δi and 2 = γi− δ

From the last equation follows γ = 0, δ = −2. Then we find λ = 1/
√

3, µ = −1/
√

3.

So, given an imaginary point Z = A+ iB, its corresponding Klein-map is FPQR with

P = A, Q =
A√
3

+B, R = − A√
3

+B (3)

Check that if we substitute these values of P,Q in equation (1), we get (a multiple of) A+ iB
again.

In a similar way we find the inverse for lines. Let a, b be real lines, l = a+ ib, l = a− ib and
S = l ∧ l = a× b. Put p = a, q = λa+ b, r = µa+ b = (µ− λ)p+ q = ρp+ q. By equation 2
we find

(µ− λ)(
√

3− i)a− 2i(λa+ b) = (γ + δi)(a+ ib)

This leads to λ = 1/
√

3, µ = −1/
√

3, γ = −2, δ = 0 or, surprisingly, to exactly the same
formula as for points:

p = a, q =
a√
3

+ b, r = − a√
3

+ b (4)

Thus we proved that κ is bijective.

Summarizing we have:

Definition 3.2 Given a fixed system of reference XY ZU , an arbitrary line l with distinct
points P,Q and R = ρP + Q on it, and an arbitrary point S with lines l,m and n = ρl + m
through it. Let F = FPQR and g = glmn. Then κ is defined by

κ(F ) = ρ(1 + i
√

3)P + 2Q = (ρP + 2Q) + iρ
√

3P

κ(g) = (ρ
√

3)l − (ρl + 2m)i = ρ(
√

3− i)l − 2mi

Proposition 3.3 Given the real points A,B, the real lines a, b, the imaginary point A + iB
and the imaginary line a+ ib, there are real collinear points

P = A, Q =
A√
3

+B, R = − A√
3

+B

and real concurrent lines

p = a, q =
a√
3

+ b, r = − a√
3

+ b

such that κ−1(A+ iB) = FPQR and κ−1(a+ ib) = gpqr. �

Proposition 3.4 The map κ is bijective. �
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4 The invariance of ≺

Nex we have to prove that the order relation in the plane is invariant under κ and under its
inverse (see section 2). So if P is a (real or imaginary) point and l a (real or imaginary) line
l, we have to prove that P ≺ l ⇔ κ(P ) ≺ κ(l) or, equivalently, P ≺ l ⇔ κ(P )τκ(l) = 0. In
the sequel we will omit κ and write P τ l instead.

We distinguish the following cases.

• If P and l are both real, this is classical real projective geometry.

• If F : m → m is imaginary and l real then F ≺ l if and only if l = m. Let A be an
arbitrary point of l and let A′ = F (A), A′′ = F (A′). Let M be any map that moves
X, I1, I2 onto A,A′, A′′ respectively, then F = M(i : 1 : 0)τ . Now (M−1)τ moves line
XY to m, so the coordinates of m are (M−1)τ [0 : 0 : 1]τ . If l = m then

F τ l = (i : 1 : 0)M τ (M−1)τ [0 : 0 : 1]τ = (i : 1 : 0)[0 : 0 : 1]τ = 0

Conversely, if F τ l = 0 then (i : 1 : 0)[α : β : γ] = 0 hence β = −αi and l = (M−1)τ [α :
−αi : γ]τ . But l is real, hence α = 0 and l = γ(M−1)τ [0 : 0 : 1]τ = m.

• And dually a similar proof for a real point on an imaginary line.

• Now let F : l→ l and g : Q→ Q be imaginary elements with Q 6≺ l. Take an arbitrary
point A ≺ l and define A′ = F (A), A′′ = F (A′), a = QA, a′ = QA′, a′′ = QA′′. Then
there is an α ∈ R∗ such that A′′ = αA + A′. Now the map M = (α

√
3A,αA + 2A′, Q)

sends X to A, I1 to A′, I2 to A′′ and Z to Q (and U to α(1 +
√

3)A + 2A′ + Q). M−1

sends them back, M τ sends l to XY and F = MPi.
F is on g if and only if g(a) = a′ and g(a′) = a′′, and that is the case if and only
if M τg = li, the fundamental imaginary line. In that case F τg = (MPi)

τ (M−1)τ li =
P τ
i M

τ (M−1)τ li = P τ
i li = 0.

Conversely, let g = [α : β : γ]. If F τg = (MPi)
τg = 0 then (Pi)

τM τg = 0 so M τg =
[α : −αi : γ]. But g contains Q = M(0 : 0 : 1)τ so γ = 0 and M τg = −αi[i : 1 : 0] = li.
That means Pi ≺M τg, or F = MPi ≺ (M τ )−1(M τg) = g.
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