
1 Computations in space

1.1 Coordinates

1.1.1 Points and planes

A system of reference in our real projective 3-space S, consists of five points in general position.
We will call and coordinatize them as follows. X0(1 : 0 : 0 : 0), X1(0 : 1 : 0 : 0), X2(0 : 0 : 1 :
0), X3(0 : 0 : 0 : 1), Xu(1 : 1 : 1 : 1).

Figure 1: the system of reference

In addition we have the five coordinate planes Y0 = X1X2X3 = [1 : 0 : 0 : 0], Y1 = X0X2X3 =
[0 : 1 : 0 : 0], Y2 = X0X1X3 = [0 : 0 : 1 : 0], Y3 = X0X1X2 = [0 : 0 : 0 : 1], and
Yu = [1 : 1 : 1 : 1] which is the plane through the points (1 : −1 : 0 : 0), (1 : 0 : −1 : 0),
(1 : 0 : 0 : −1), (0 : 1 : −1 : 0), (0 : 1 : 0 : −1) and (0 : 0 : 1 : −1). A point P (pi) is in a plane
A[aj] if and only if

AτP = [a0 : a1 : a2 : a3]


p0
p1
p2
p3

 = a0p0 + a1p1 + a2p2 + a3p3 = 0

This is not an inproduct but a matrix multiplication.

If P (pi), Q(qi) are points then for each pair of real numbers λ, µ the point R = λP + µQ =
(λpi + µqi) is on the line PQ. Dually the plane C = λA + µB contains the common line of
the planes A and B.

Sometimes we need coordinates too for the minimal and maximal element:

∅ = (0 : 0 : 0 : 0), P = [0 : 0 : 0 : 0]
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1.1.2 Plücker-coordinates

Let P (pi) and Q(qi) be distinct points. The Plücker-matrix of these points is the 4×4-matrix
Plm(l) = (lij) with

lij = piqj − pjqi (1)

If P ′(p′i), Q
′(q′i) are distinct points on the line PQ, and if l′ij = p′iq

′
j − p′jq

′
i, then there is a

non-zero real number λ such that l′ij = λlij for all i, j. So we can call (lij) the Plücker-matrix
of line l = P ∨Q, notation Plm(l). It is skew symmetric and singular.

Since lij = −lji, and in particular lii = 0, there are only six significant numbers in this matrix.
Depending on the author and on the particular application, in the literature there are several
ways of selecting and ordering these six numbers. We define the Plücker-vector of l to be

Plv(l) = P ∧e Q = (l01 : l02 : l03 : l12 : l31 : l23)

(Be aware of the strange fifth coordinate l31 = −l13!) Here ∧e is the exterior or outer or
wedge product as defined by (1). These six numbers are not independent. They satisfy the
so called line condition:

Pln(l) = l01l23 + l02l31 + l03l12 = 0 (2)

A vector (l01 : l02 : l03 : l12 : l31 : l23) represents a line if and only if relation (2) holds.

The four vectors (li0 : li1 : li2 : li3) are – if they are not the zero-vector – points on l, viz. its
meeting points with the coordinate planes.

Dually, given the distinct planes A(ai) and B(bi) containing l we get the dual Plücker-
coordinates mij = aibj − ajbi. It appears that

m01 : m02 : m03 : m12 : m31 : m23 = l23 : l31 : l12 : l03 : l02 : l01

The four vectors [mi0 : mi1 : mi2 : mi3] are, if they are not the zero-vector, planes through l,
viz. the joins of l and the coordinate points.

The matrix

ι =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


transforms point- into plane-coordinates and vice versa. If (a0 : a1 : a2 : a3 : a4 : a5) is the
pointwise vector of a line, then

ι(a0 : a1 : a2 : a3 : a4 : a5) = (a0 : a1 : a2 : a3 : a4 : a5)
ι = [a5 : a4 : a3 : a2 : a1 : a0]

is its planewise vector.
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Observe that the relation between pointwise and planewise (=dual) matrices is a bit more
complicated. We use ι also as a map defined on matrices:

ι


0 a0 a1 a2
−a0 0 a3 −a4
−a1 −a3 0 a5
−a2 a4 −a5 0

 =


0 a0 a1 a2
−a0 0 a3 −a4
−a1 −a3 0 a5
−a2 a4 −a5 0


ι

=


0 a5 a4 a3
−a5 0 a2 −a1
−a4 −a2 0 a0
−a3 a1 −a0 0


The six coordinate axes with pointwise and planewise Plücker-coordinates are:

X0 ∨X1 = (1 : 0 : 0 : 0 : 0 : 0) = ι[0 : 0 : 0 : 0 : 0 : 1] = Y2 ∧ Y3
X0 ∨X2 = (0 : 1 : 0 : 0 : 0 : 0) = ι[0 : 0 : 0 : 0 : 1 : 0] = Y1 ∧ Y3
X0 ∨X3 = (0 : 0 : 1 : 0 : 0 : 0) = ι[0 : 0 : 0 : 1 : 0 : 0] = Y1 ∧ Y2
X1 ∨X2 = (0 : 0 : 0 : 1 : 0 : 0) = ι[0 : 0 : 1 : 0 : 0 : 0] = Y0 ∧ Y3
X1 ∨X3 = (0 : 0 : 0 : 0 : 1 : 0) = ι[0 : 1 : 0 : 0 : 0 : 0] = Y0 ∧ Y2
X2 ∨X3 = (0 : 0 : 0 : 0 : 0 : 1) = ι[1 : 0 : 0 : 0 : 0 : 0] = Y0 ∧ Y1

Exercise. Classify the lines in space, i.e. prove the following. If all but 1 coordinate of a
line l vanishes, then l is a coordinate axis. If all but 2 coordinates of l vanish, then there is
one point Xi and one plane Yj such that Xi ≺ l ≺ Yj. If 3 coordinates of l vanish and 3 are
6= 0, then either l contains one point Xi or it is in one plane Yj. If 2 coordinates vanish then l
meets two axes but contains no Xi and is in no Yj. If only 1 coordinate vanishes then l meets
only one axis and contains no Xi and is in no Yj. If no coordinate vanishes l is skew to all
axes. �

1.1.3 Affine Plücker coordinates

Let in affine space be given the distinct vectors/points P (p0, p1, p2) = (p0 : p1 : p2 : 1) and
Q(q0, q1, q2) = (q0 : q1 : q2 : 1) and consider the line PQ. Define V = P −Q = (v0, v1, v2) and
W = P ×Q = (w0, w1, w2). Plücker himself defined the coordinates of line PQ as

(v0 : v1 : v2 : w0 : w1 : w2)

in which
v0 = p0 − q0 w0 = p1q2 − p2q1
v1 = p1 − q1 w1 = −(p0q2 − p2q0)
v2 = p2 − q2 w2 = p0q1 − p1q0

When we compare these with

P ∧e Q = ( p0q1 − p1q0 : p0q2 − p2q0 : p0 − q0 : p1q2 − p2q1 : −(p1 − q1) : p2 − q2 )
= ( w2 : −w1 : v0 : w0 : −v1 : v2 )

we see that the two expressions differ only in the ordering and two signs of the coordinates.
Hence the two definitions are equivalent as long as no point is at infinity.
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1.2 Mutual position of points, lines and planes

Let again S denote real 3-dimensional projective space, with a fixed system of reference, see
figure 2.

Figure 2: the system of reference

We suppose now that in formulae vectors are denoted vertically (columns) and the transpose
operator τ turns horizontal ones into vertical ones and vice versa. But in running text we
write vectors horizontally to save space. Point coordinates are in round brackets, dual or plane
ones in square brackets. Let P = (pi) = (p0 : p1 : p2 : p3), Q = (qi) = (q0 : q1 : q2 : q3) and
R = (ri) = (r0 : r1 : r2 : r3) be points, let l,m, n be lines and let A = [ai] = [a0 : a1 : a2 : a3],
B = [bi] = [b0 : b1 : b2 : b3] and C = [ci] = [c0 : c1 : c2 : c3] be planes of S.

Each line has four numerical representations: as a 6-vector or as a 4× 4-matrix, pointwise or
planewise. E.g.

m = (mk) = (mij) = [m′ij]
ι = [m′k]

ι

For each line the line conditions holds:

Pln(m) = m01m23 +m02m31 +m03m12 = m0m5 +m1m4 +m2m3 = 0

We list the formulas to compute meet and join in S. We will need the following bilinear
function, where l,m are lines

Ω(l,m) = [li]
τ (mi) = Σ5

0lim5−i = l0m5 + l1m4 + l2m3 + l3m2 + l4m1 + l5m0

Observe that Ω(l, l) = 2Pln(l) = 0 for all lines.

• Two points

P = Q ⇔ ∃µ ∈ R \ 0 : (pi) = µ(qi)

If P 6= Q then m = P ∨Q is a line and

Pv(m) = (mi) = (pi) ∧e (qj)
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• One point and one line

P ≺ m ⇔ [m′ij](pj) = 0

If P 6≺ m then A = P ∨m is a plane with

[ai] = [m′ij](pj)

• A One point and one plane

P ≺ A ⇔ [ai]
τ (pi) = 0

• Two lines
Two lines m,n are skew if and only if Ω(m,n) = [m′i]

τ (ni) 6= 0. If they are not, first
check if m = n. If this is not the case they meet in a point P = m∧n and their join is a
plane A = m∨n. To find A and P take any plane B containing m (take for instance one
of the non-zero vectors of the matrix [mij]; or, if you do not know if these vectors are
0, take the sum of two or three of them). If (nij)[Bj] = 0 this plane contains n as well
and hence B = A. Else (nij)[Bj] = P . Dually: take any point Q on m. If [n′ij](Qj) = 0
this point is on n as well and hence Q = P . Else [n′ij](Qj) = A.

There is no simple symmetrical formula that determines meeting point and joining plane
of distinct coplanar lines.

• One line and one plane

m ≺ A ⇔ (mij)[aj] = 0

If m 6≺ A then P = A ∧m is a point and

(pi) = (mij)[aj]

• Two planes

A = B ⇔ ∃µ ∈ R \ 0 : [a] = µ[b]

If A 6= B then A ∧B is a line m with

[m′i] = [a] ∧e [b]

• Three points or three planes
The equation of the plane A through P,Q,R is

det(A,P,Q,R) = 0

The common point P of A,B,C is obtained from det(P,A,B,C) = 0.
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1.3 Exercises

1. Let be given the points P (2 : 4 : −1 : 0) and Q(−2 : −1 : 1 : 1), and the planes
A[2 : −1 : 0 : 3] and B[−1 : 5 : 1 : 2].
a. Verify that both P and Q are in A as well as in B.
b. Determine the Plücker-matix of both P ∨Q and A ∧B.
c. Determine the Plücker-vector from each of these matrices and show that the lines are equal.

2. Let be given the system of reference X0 . . . Xu, Y0 . . . Yu and the line l(1 : 2 : 3 : 4 : 5 : 6).
a. Determine the points l ∧ Yi and the planes l ∨Xi for i ∈ {0, 1, 2, 3}.
b. Is the point P (1 : 0 : 5 : 2) on l? If not, determine P ∨ l.
c. Is l in the plane A(3 : −3 : 1 : 4)? If not, determine the meeting point l ∧ A.

3. Let be given the lines l(−9 : 6 : −2 : 6 : 5 : 2) and m(2 : −3 : 1 : 2 : 0 : −1). Are they
coincident or skew? If not, determine meeting point and joining plane.

4. Show that line P ∨Q meets the X1X3-axis.

Answers. 1b.

P ∨Q =


0 6 0 2
−6 0 3 4
0 −3 0 −1
−2 −4 1 0

 , A ∧B =


0 −3 −12 9
3 0 6 0
12 −6 0 18
−9 0 −18 0

 =


0 −1 −4 3
1 0 2 0
4 −2 0 6
−3 0 −6 0


1c. (6 : 0 : 2 : 3 : −4 : −1) = ι[−1 : −4 : 3 : 2 : 0 : 6]
2a. These points and planes can be derived directly from the above matrices.
2b.

l ∨ P = (lij)
ι(pj) =


0 6 5 4
−6 0 3 −2
−5 −3 0 1
−4 2 −1 0




1
0
5
2

 =


33
5
−3
−9


2c.

l ∧ A = (lij)[aj] =


0 1 2 3
−1 0 4 −5
−2 −4 0 6
−3 5 −6 0




3
−3
1
4

 =


11
−19
30
−30


3. l ∧m = (1 : −2 : 2 : −1), l ∨m = [1 : 0 : 1 : 3]
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2 The parabolic strip

Definition 2.1 Given a line l in real projective space, a parabolic strip is a projective map

f : 〈∅, l〉 → 〈l,P〉 or f : 〈l,P〉 → 〈∅, l〉

l is called the axis or bearer of f .

Figure 3: construction of a parabolic strip

Figure 4: orientation in a parabolic strip
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Hence, a parabolic strip maps the points of a line onto the planes through that line, while
keeping cross ratios invariant. To put it sloppy: if a point traverses that complete line once,
the corresponding plane rotates a half turn around the line.

In figure 3 a standard construction of a parabolic strip is drawn. Start with three pairwise
skew lines l,m, n. Take an arbitrary point X on l. The plane AX = X ∨ m meets n in a
point PX . If we define f(X) = BX = l ∨ PX = l ∨ ((X ∨m) ∧ n) then f is projective, hence
a parabolic strip. In figure 4 the construction is repeated for the point Y .

Proposition 2.2 Decomposition of parabolic strips. Given a parabolic strip f : 〈∅, l〉 →
〈l,P〉 there exist lines m,n, such that f(X) = ((X ∨m) ∧ n) ∨ l for each X ≺ l.

Figure 5: decomposing a parabolic strip

Proof. Take three distinct points P, Q and R on l. Let A = f(P ), B = f(Q) and C = f(R),

see figure 5. Take an arbitrary line m, skew to l, and let S, T, U be the meeting poinst of m with

A,B,C respectively. Observe that the lines PS,QT,RU are pairwiese skew. Take a third point V

on line TQ. The plane V PS meets line RU in a point W . Let n = VW and verify that n is skew

to both l and m. Define g(X) = ((X ∨m) ∧ n) ∨ l for X ≺ l. Then g and f have equal images on

the three distinct points P,Q,R of l, hence they are equal in each point of l. �

Since a parabolic strip is a projectivity betwee 1-dimensional spaces, the map is determined
by three points and their images. We will denote the strip f by (PQR f(P )f(Q)f(R))) where
P,Q,R are any three distinct points on the axis of f . So the strip of figure 5 is denoted by
(PQR ABC).

Observe that if in figure 4 you move point Y to the right, the plane f(Y ) turns to the left, it is
a left-handed orientation1. With different positions of m and n this may change. For instance,

1 An exact definition of ‘orientation’ involves a good deal of Differential Geometry or Homology Theory,
see e.g. [?]. In this treatise we will we will handle the subject intuitively.
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if you interchange m and n, you will get a right-handed orientation. The rule is as follows.
The lines l,m divide the collection of all lines in two parts. Each line of one part can move
in that part without crossing either of l,m. If n, n′ are in the same part, the corresponding
strips have the same orientation, otherwise opposite. See section 3 for an exact treatment of
‘orientation’.

3 Orientation

Without proof we state that real projective spaces of odd dimension are orientable, those of
even dimension not (see also footnote on page 8). So, our 3-dimensional space is orientable.
What does that mean?

Intuitively, moving along a line and simultaneously turning a plane about that line in a
clockwise sense is called a right-handed orientation, turning counter clockwise is called left-
handed. It is the parabolic strip that does this formally, see figure 6. A parabolic strip
is determined by three distinct points on a line and three distinct planes containing that
line. So we are looking for a function ω that maps each such 6-tuple (PQR ABC) onto

Figure 6: a right-handed parabolic strip

one of the numbers 1 and −1. If p is an even permutation of ABC then ω(PQR p(ABC))
should have the same sign as ω(PQR ABC), and if p is odd they must have opposite signs.
Similarly ω(q(PQR) ABC) = ω(PQR ABC) if q is an even permutation of PQR, and
ω(q(PQR) ABC) = −ω(PQR ABC) if q is odd. In addition, ω should be independent of the
choice of the points P,Q,R on l.

We will first fix an initial parabolic strip and assign a positive orientation to it, and then
define the orientation of an arbitrary strip relative to the initial one.

Definition 3.1 The initial positive parabolic strip is g = (X0 X1 (X0+X1) Y2 Y3 (Y2+Y3)).
Its orientation is defined as ω(g) = 1.
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It is shown in figure 7. Observe that it is a right-handed orientation. But if we interchange
X0 and X1 it becomes left-handed. So we will not use left- and right-handed anymore but
only positive and negative with respect to the system of reference, i.e. to the initial positive
strip. Observe also that the orientation does not change if we put Xu elsewhere on the line
through X0 +X1 and X2 +X3 (as long as it does not coincide with one of these points). But
if we move it such that X0 + X1 keeps its position but X2 + X3 moves to the other segment
X2X3 then the orientation does change.

Figure 7: the initial positive orientation

Let f : 〈∅, l〉 → 〈l,P〉 be any parabolic strip, let P,Q,R be distinct points on line l, and
A = f(P ), B = f(Q), C = f(R), see figure 8. Let α, β be the (unique) non-zero real numbers

Figure 8: an arbitrary parabolic strip
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such that R = P + αQ and C = A + βB. We will construct a projectivity h that maps
X0, X1, X0 +X1, Y2, Y3, Y2 +Y3 on P,Q,R,A,B,C respectively. Let m be any line skew to
l and let S, T, U be the meeting points of m with A,B,C respectively. If (M) is the pointwise
Plücker-matrix of m then S = (M)A, T = (M)B and U = (M)A+β(M)B = S+βT . Define
the points V = (M)A−β(M)B = S−βT and W = Wλ = R+λV for any non-zero real number
λ. Then P,Q, S, T,W are in general position hence there is a unique projectivity h = hλ that
maps X0, X1, X2, X3, Xu onto P,Q, T, S,Wλ respectively. Let (pi) be the coordinates of P
etc. Then the pointmatrix of h equals

p0 αq0 −λβt0 λs0
p1 αq1 −λβt1 λs1
p2 αq2 −λβt2 λs2
p3 αq3 −λβt3 λs3

 = (P, αQ,−βλT, λS)

Verify that h also maps X0 + X1, X2 + X3, X2 − X3 onto R, V, U respectively. Then also
h(Y2) = h(X0 ∨X1 ∨X3) = P ∨Q∨S = A, h(Y3) = B and h(Y2 +Y3) = C. The determinant
of h equals −αβλ2 det(PQTS) = αβλ2 det(PQST ).

In section ?? (proposition ??) we prove that the determinants of (PQST ) and (PQAB) have
the same sign. So we define:

Definition 3.2 Let f : 〈∅, l〉 → 〈l,P〉 be a parabolic strip, let P,Q,R = P + αQ be distinct
points on line l, and A = f(P ), B = f(Q), C = f(R) = A+ βB. Let m be any line skew to l
that meets A,B,C in the points S = [M ]A, T = [M ]B and U = S + βT respectively, where
[M ] is the planewise matrix of m. Then the orientation of f is defined as

ω(f) =
αβ det(PQAB)

|αβ det(PQAB)|
=

αβ det(PQST )

|αβ det(PQST )|
∈ {1,−1}

Observe first that a matrix (PQAB) has no meaning in our theory, but its determinant
can still be computed. Observe also that interchanging P and Q changes the orientation.
And changing the sign of α moves R from one segment of PQ to the other. Similar for
interchanging A,B, and for changing the sign of β. That means that ω satisfies the above
required conditions of permutation.

Proposition 3.3 If p is an even permutation of ABC then ω(PQR p(ABC)) = ω(PQR ABC).
If p is an odd permutation of ABC then ω(PQR p(ABC)) = −ω(PQR ABC). �

For completeness we mention that there is of course a dual formula

ω(f) =
αβ det(EFAB)

|αβ det(PQAB)|

where E = P ∨m and F = Q ∨m. The reader is invited to derive this formula, but we will
not use it.

Does these formula comply with ω(g) = 1? Obviously (X0X1Y2Y3) is the identiy matrix and
α = β = 1. But (X0X1X3X2) has determinant −1 and β = −1: one has to be careful. The
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problem is that projecitve points P and −P are equal, but in algebraic formulae they may
have to be treated differently.

Observe also thet ω(f) = det(h)/| det(h)|, i.e. h = hλ (see above) is order preserving if and
only if det(h) > 0. As a consequence we have

Proposition 3.4 Let f1 = (P1Q1R1 A1B1C1) and f2 = (P2Q2R2 A2B2C2) be parabolic strips
and let h be any projectivity that maps P1, . . . C1 onto P2, . . . C2 respectively. Then ω(f2) =
ω(f1) det(h)/| det(h)|. �

We still have to prove that the orientation of f does not depend on the choice of P,Q,R.

Proposition 3.5 Let f be a parabolic strip with axis l, P,Q,R arbitrary distinct points on
l, P ′, Q′, R′ also arbitrary distinct points on l, A,B,C,A′, B′, C ′ their f -images. Then

α′β′ det(P ′Q′A′B′)

|α′β′ det(P ′Q′A′B′)|
=

αβ det(PQAB)

|αβ det(PQAB)|

where again R = P + αQ and C = A+ βB and similar for α′, β′.

Proof. Take as a local system of reference for points on l P,Q, P +Q and for planes A,B,A+ B.
Then f is linear with matrix

f =

(
α 0
0 β

)
Then f(P ) = αA, f(Q) = βB and f(R) = f(P + αQ) = αA + αβB = α(A + βB) = αC. Let
the local coordinates be P ′ = (p0 : p1), Q

′ = (q0 : q1), then R′ = (p0 + α′q0 : p1 + α′q1). Now
f(R′) = (αp0 + αα′q0 : βp1 + βα′q1) = A′ + α′B′, hence – not surprisingly – β′ = α′. The ordering
with respect to the primed elements uses

(α′)2|P ′Q′A′B′| =
(α′)2|(p0P + p1Q)(q0P + q1Q)(αp0A+ βp1B)(αq0A+ βq1B)| =

(α′)2|(p0q1 − p1q0)PQ αβ(p0q1 − p1q0)AB =

(α′)2αβ(p0q1 − p1q0)2|PQAB|

which has the same sign as αβ|PQAB|. �

Proposition 3.6 Let l,m be skew lines and let fl be any parabolic strip with axis l. Then
each projective map h that maps l on m defines a parabolic strip fm = hflh

−1 on m with the
same orientation as fl.

Proof. Observe first that h maps points on l to points on m and similar for planes; and likewise for

h−1. Let X be any point of m. Then Y = h−1(X) is a point of l. Nex f(Y ) is a plane containing l

and hf(Y ) a plane containing m. Since deth and deth−1 have the same sign ω(fm) = ω(fl). �

Observe the difference with proposition 3.4.
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4 Orientation of linear complexes

Regular linear complexes can be considered to consist of a pencil of parabolic linear con-
gruences. Like parabolic strips, regular linear complexes split into two classes of opposite
orientation. First we show that all parabolic strips of a regular linear complex have the same
orientation.

Proposition 4.1 If K is a regular linear complex and m1,m2 ∈ K. Let f1, f2 be the parabolic
strips that are the restrictions of nK to the pointranges on m1,m2 respectively. Then ω(f1) =
ω(f2).

Proof. We have seen that all linear complexes are similar. So we only need to prove our proposition
for one complex. Take K = (ki) = (0 : 1 : 0 : 0 : 1 : 0) = ι[0 : 1 : 0 : 0 : 1 : 0]. So its matrices are

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 = ι


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


Then Pln(K) = 1 and detnK = 1 6= 0 so K is regular.

Let m = (mi) be any line of K, then the line condition says m0m5 + m1m4 + m2m3 = 0, and
nK(m) = m implies

Ω(k,m) = [ki]
τ (mi) = m1 +m4 = 0

hence m4 = −m1. Let the parabolic strip f be the restriction of nK to the point range on m.

• If m3 6= 0 then P (m1 : m3 : 0 : −m5), Q(m0 : 0 : −m3 : −m1) and R = P + Q are distinct
points on m. Now

A = nK(P ) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




m1

m3

0
−m5

 =


0
−m5

m1

−m3

 ,

B = nK(Q) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




m0

0
−m3

−m1

 =


m3

−m1

m0

0


and C = nK(R) = A+B. Then

det(PQAB) =

∣∣∣∣∣∣∣∣
m1 m0 0 m3

m3 0 m5 −m1

0 −m3 m1 m0

−m5 m1 m3 0

∣∣∣∣∣∣∣∣ =

= +m2
1m

2
3 +m0m

2
1m5 +m4

1 +m2
0m

2
3 +m4

3 +m2
1m

2
3 +m2

0m
2
5 +m0m

2
1m5 +m2

3m
2
5 =

= +m2
1m

2
3 + (m0m5 +m2

1)
2 +m2

0m
2
3 +m4

3 +m2
1m

2
3 +m2

3m
2
5 > 0

(since by hypothesis m3 6= 0), independent of the values of the mi.
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• If m3 = 0 6= m1 = −m4 then take P (0 : m0 : m1 : m2) and Q(m0 : 0 : 0 : −m1). Then
|PQAB| = (m2

0 −m2
2)

2 +m4
1 > 0.

• If m1 = m3 = m4 = 0 and one of the remaining mi 6= 0 it is left as an exercise for the reader
to show that |PQAB| > 0.

This holds for all lines of K, hence all its parabolic strips have the same orientation. �

Proposition 4.2 If K is a linear complex with null-polarity nK and Plücker-number p =
k0k5 + k1k4 + k2k3 then ω(nK) = −p/|p|.

Let [K] and (K) be the plane- and point-matrix of nK respectively. At least one of the
ki 6= 0, say k5 6= 0. Define the planes A = nK(X0) = [0 : −k5 : −k4 : −k3] and let
P = (0 : −k4 : k5 : 0) 6= X0 a second point of A. Then the line m = X0 ∨ P belongs tot the
pencil 〈X0, nK(X0)〉 hence to K. Define B = nK(P ) = [0 : k2k5 : k2k4 : −k1k4 − k0k5]. Now

det(X0PAB) =

∣∣∣∣∣∣∣∣
1 0 0 0
0 −k4 −k5 k2k5
0 k5 −k4 k2k4
0 0 −k3 −k1k4 − k0k5

 = −

∣∣∣∣∣∣
−k4 k5 k2k5
k5 k4 k2k4
0 k3 −k1k4 − k0k5

 =

k4

∣∣∣∣ k4 k2k4
k3 −k1k4 − k0k5

]
+ k5

∣∣∣∣ k5 k2k5
k3 −k1k4 − k0k5

]
=

= −k24(+k1k4 + k0k5 + k2k3)− k25(+k1k4 + k0k5 + k2k3) = −p(k24 + k25)

By definition 3.2, using α = β = 1 again, follows the proposition.
If k5 = 0 then there is another ki 6= 0. It is left as an exercise for the reader that again our
proposition holds. �

Lou de Boer, May 2021
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