1 Computations in space

1.1 Coordinates

1.1.1 Points and planes

A system of reference in our real projective 3-space \mathcal{S}, consists of five points in general position. We will call and coordinatize them as follows. $X_{0}(1: 0: 0: 0), X_{1}(0: 1: 0: 0), X_{2}(0: 0: 1:$ $0), X_{3}(0: 0: 0: 1), X_{u}(1: 1: 1: 1)$.

Figure 1: the system of reference

In addition we have the five coordinate planes $Y_{0}=X_{1} X_{2} X_{3}=[1: 0: 0: 0], Y_{1}=X_{0} X_{2} X_{3}=$ $[0: 1: 0: 0], Y_{2}=X_{0} X_{1} X_{3}=[0: 0: 1: 0], Y_{3}=X_{0} X_{1} X_{2}=[0: 0: 0: 1]$, and $Y_{u}=[1: 1: 1: 1]$ which is the plane through the points $(1:-1: 0: 0),(1: 0:-1: 0)$, $(1: 0: 0:-1),(0: 1:-1: 0),(0: 1: 0:-1)$ and $(0: 0: 1:-1)$. A point $P\left(p_{i}\right)$ is in a plane $A\left[a_{j}\right]$ if and only if

$$
A^{\tau} P=\left[a_{0}: a_{1}: a_{2}: a_{3}\right]\left(\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)=a_{0} p_{0}+a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}=0
$$

This is not an inproduct but a matrix multiplication.
If $P\left(p_{i}\right), Q\left(q_{i}\right)$ are points then for each pair of real numbers λ, μ the point $R=\lambda P+\mu Q=$ $\left(\lambda p_{i}+\mu q_{i}\right)$ is on the line $P Q$. Dually the plane $C=\lambda A+\mu B$ contains the common line of the planes A and B.

Sometimes we need coordinates too for the minimal and maximal element:

$$
\emptyset=(0: 0: 0: 0), \quad \mathbb{P}=[0: 0: 0: 0]
$$

1.1.2 Plücker-coordinates

Let $P\left(p_{i}\right)$ and $Q\left(q_{i}\right)$ be distinct points. The Plücker-matrix of these points is the 4×4-matrix $P l_{m}(l)=\left(l_{i j}\right)$ with

$$
\begin{equation*}
l_{i j}=p_{i} q_{j}-p_{j} q_{i} \tag{1}
\end{equation*}
$$

If $P^{\prime}\left(p_{i}^{\prime}\right), Q^{\prime}\left(q_{i}^{\prime}\right)$ are distinct points on the line $P Q$, and if $l_{i j}^{\prime}=p_{i}^{\prime} q_{j}^{\prime}-p_{j}^{\prime} q_{i}^{\prime}$, then there is a non-zero real number λ such that $l_{i j}^{\prime}=\lambda l_{i j}$ for all i, j. So we can call $\left(l_{i j}\right)$ the Plücker-matrix of line $l=P \vee Q$, notation $P l_{m}(l)$. It is skew symmetric and singular.

Since $l_{i j}=-l_{j i}$, and in particular $l_{i i}=0$, there are only six significant numbers in this matrix. Depending on the author and on the particular application, in the literature there are several ways of selecting and ordering these six numbers. We define the Plücker-vector of l to be

$$
P l_{v}(l)=P \wedge_{e} Q=\left(l_{01}: l_{02}: l_{03}: l_{12}: l_{\mathbf{3 1}}: l_{23}\right)
$$

(Be aware of the strange fifth coordinate $l_{31}=-l_{13}!$) Here \wedge_{e} is the exterior or outer or wedge product as defined by (1). These six numbers are not independent. They satisfy the so called line condition:

$$
\begin{equation*}
P l_{n}(l)=l_{01} l_{23}+l_{02} l_{31}+l_{03} l_{12}=0 \tag{2}
\end{equation*}
$$

A vector $\left(l_{01}: l_{02}: l_{03}: l_{12}: l_{31}: l_{23}\right)$ represents a line if and only if relation (2) holds.
The four vectors $\left(l_{i 0}: l_{i 1}: l_{i 2}: l_{i 3}\right)$ are - if they are not the zero-vector - points on l, viz. its meeting points with the coordinate planes.

Dually, given the distinct planes $A\left(a_{i}\right)$ and $B\left(b_{i}\right)$ containing l we get the dual Plückercoordinates $m_{i j}=a_{i} b_{j}-a_{j} b_{i}$. It appears that

$$
m_{01}: m_{02}: m_{03}: m_{12}: m_{31}: m_{23}=l_{23}: l_{31}: l_{12}: l_{03}: l_{02}: l_{01}
$$

The four vectors [$m_{i 0}: m_{i 1}: m_{i 2}: m_{i 3}$] are, if they are not the zero-vector, planes through l, viz. the joins of l and the coordinate points.

The matrix

$$
\iota=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

transforms point- into plane-coordinates and vice versa. If ($\left.a_{0}: a_{1}: a_{2}: a_{3}: a_{4}: a_{5}\right)$ is the pointwise vector of a line, then

$$
\iota\left(a_{0}: a_{1}: a_{2}: a_{3}: a_{4}: a_{5}\right)=\left(a_{0}: a_{1}: a_{2}: a_{3}: a_{4}: a_{5}\right)^{\iota}=\left[a_{5}: a_{4}: a_{3}: a_{2}: a_{1}: a_{0}\right]
$$

is its planewise vector.

Observe that the relation between pointwise and planewise (=dual) matrices is a bit more complicated. We use ι also as a map defined on matrices:

$$
\iota\left(\begin{array}{cccc}
0 & a_{0} & a_{1} & a_{2} \\
-a_{0} & 0 & a_{3} & -a_{4} \\
-a_{1} & -a_{3} & 0 & a_{5} \\
-a_{2} & a_{4} & -a_{5} & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{0} & a_{1} & a_{2} \\
-a_{0} & 0 & a_{3} & -a_{4} \\
-a_{1} & -a_{3} & 0 & a_{5} \\
-a_{2} & a_{4} & -a_{5} & 0
\end{array}\right)=\left[\begin{array}{cccc}
0 & a_{5} & a_{4} & a_{3} \\
-a_{5} & 0 & a_{2} & -a_{1} \\
-a_{4} & -a_{2} & 0 & a_{0} \\
-a_{3} & a_{1} & -a_{0} & 0
\end{array}\right]
$$

The six coordinate axes with pointwise and planewise Plücker-coordinates are:

$$
\begin{aligned}
& X_{0} \vee X_{1}=(1: 0: 0: 0: 0: 0)=\iota[0: 0: 0: 0: 0: 1]=Y_{2} \wedge Y_{3} \\
& X_{0} \vee X_{2}=(0: 1: 0: 0: 0: 0)=\iota[0: 0: 0: 0: 1: 0]=Y_{1} \wedge Y_{3} \\
& X_{0} \vee X_{3}=(0: 0: 1: 0: 0: 0)=\iota[0: 0: 0: 1: 0: 0]=Y_{1} \wedge Y_{2} \\
& X_{1} \vee X_{2}=(0: 0: 0: 1: 0: 0)=\iota[0: 0: 1: 0: 0: 0]=Y_{0} \wedge Y_{3} \\
& X_{1} \vee X_{3}=(0: 0: 0: 0: 1: 0)=\iota[0: 1: 0: 0: 0: 0]=Y_{0} \wedge Y_{2} \\
& X_{2} \vee X_{3}=(0: 0: 0: 0: 0: 1)=\iota[1: 0: 0: 0: 0: 0]=Y_{0} \wedge Y_{1}
\end{aligned}
$$

Exercise. Classify the lines in space, i.e. prove the following. If all but 1 coordinate of a line l vanishes, then l is a coordinate axis. If all but 2 coordinates of l vanish, then there is one point X_{i} and one plane Y_{j} such that $X_{i} \prec l \prec Y_{j}$. If 3 coordinates of l vanish and 3 are $\neq 0$, then either l contains one point X_{i} or it is in one plane Y_{j}. If 2 coordinates vanish then l meets two axes but contains no X_{i} and is in no Y_{j}. If only 1 coordinate vanishes then l meets only one axis and contains no X_{i} and is in no Y_{j}. If no coordinate vanishes l is skew to all axes. \diamond

1.1.3 Affine Plücker coordinates

Let in affine space be given the distinct vectors/points $P\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{0}: p_{1}: p_{2}: 1\right)$ and $Q\left(q_{0}, q_{1}, q_{2}\right)=\left(q_{0}: q_{1}: q_{2}: 1\right)$ and consider the line $P Q$. Define $V=P-Q=\left(v_{0}, v_{1}, v_{2}\right)$ and $W=P \times Q=\left(w_{0}, w_{1}, w_{2}\right)$. Plücker himself defined the coordinates of line $P Q$ as

$$
\left(v_{0}: v_{1}: v_{2}: w_{0}: w_{1}: w_{2}\right)
$$

in which

$$
\begin{array}{l|l|l}
v_{0}=p_{0}-q_{0} & w_{0}=p_{1} q_{2}-p_{2} q_{1} \\
v_{1}=p_{1}-q_{1} & w_{1}= & -\left(p_{0} q_{2}-p_{2} q_{0}\right) \\
v_{2}=p_{2}-q_{2} & w_{2}=p_{0} q_{1}-p_{1} q_{0}
\end{array}
$$

When we compare these with

$$
\left.\begin{array}{rl}
P \wedge_{e} Q & =\left(\begin{array}{cccccccccc}
p_{0} q_{1}-p_{1} q_{0} & : & p_{0} q_{2}-p_{2} q_{0} & : & p_{0}-q_{0} & : & p_{1} q_{2}-p_{2} q_{1} & : & -\left(p_{1}-q_{1}\right) & : \\
w_{2}-q_{2}
\end{array}\right) \\
& =\left(: \begin{array}{cc}
w_{2} & : \\
w_{1} & : \\
v_{0} & : \\
w_{0} & : \\
-v_{1} & :
\end{array} v_{2}\right.
\end{array}\right)
$$

we see that the two expressions differ only in the ordering and two signs of the coordinates. Hence the two definitions are equivalent as long as no point is at infinity.

1.2 Mutual position of points, lines and planes

Let again \mathcal{S} denote real 3 -dimensional projective space, with a fixed system of reference, see figure 2.

Figure 2: the system of reference

We suppose now that in formulae vectors are denoted vertically (columns) and the transpose operator τ turns horizontal ones into vertical ones and vice versa. But in running text we write vectors horizontally to save space. Point coordinates are in round brackets, dual or plane ones in square brackets. Let $P=\left(p_{i}\right)=\left(p_{0}: p_{1}: p_{2}: p_{3}\right), Q=\left(q_{i}\right)=\left(q_{0}: q_{1}: q_{2}: q_{3}\right)$ and $R=\left(r_{i}\right)=\left(r_{0}: r_{1}: r_{2}: r_{3}\right)$ be points, let l, m, n be lines and let $A=\left[a_{i}\right]=\left[a_{0}: a_{1}: a_{2}: a_{3}\right]$, $B=\left[b_{i}\right]=\left[b_{0}: b_{1}: b_{2}: b_{3}\right]$ and $C=\left[c_{i}\right]=\left[c_{0}: c_{1}: c_{2}: c_{3}\right]$ be planes of \mathcal{S}.

Each line has four numerical representations: as a 6 -vector or as a 4×4-matrix, pointwise or planewise. E.g.

$$
m=\left(m_{k}\right)=\left(m_{i j}\right)=\left[m_{i j}^{\prime}\right]^{\iota}=\left[m_{k}^{\prime}\right]^{\iota}
$$

For each line the line conditions holds:

$$
P l_{n}(m)=m_{01} m_{23}+m_{02} m_{31}+m_{03} m_{12}=m_{0} m_{5}+m_{1} m_{4}+m_{2} m_{3}=0
$$

We list the formulas to compute meet and join in \mathcal{S}. We will need the following bilinear function, where l, m are lines

$$
\Omega(l, m)=\left[l_{i}\right]^{\tau}\left(m_{i}\right)=\Sigma_{0}^{5} l_{i} m_{5-i}=l_{0} m_{5}+l_{1} m_{4}+l_{2} m_{3}+l_{3} m_{2}+l_{4} m_{1}+l_{5} m_{0}
$$

Observe that $\Omega(l, l)=2 P l_{n}(l)=0$ for all lines.

- Two points

$$
P=Q \Leftrightarrow \exists \mu \in \mathbb{R} \backslash 0:\left(p_{i}\right)=\mu\left(q_{i}\right)
$$

If $P \neq Q$ then $m=P \vee Q$ is a line and

$$
\operatorname{Pv}(m)=\left(m_{i}\right)=\left(p_{i}\right) \wedge_{e}\left(q_{j}\right)
$$

- One point and one line

$$
P \prec m \Leftrightarrow\left[m_{i j}^{\prime}\right]\left(p_{j}\right)=\mathbf{0}
$$

If $P \nprec m$ then $A=P \vee m$ is a plane with

$$
\left[a_{i}\right]=\left[m_{i j}^{\prime}\right]\left(p_{j}\right)
$$

- A One point and one plane

$$
P \prec A \Leftrightarrow\left[a_{i}\right]^{\tau}\left(p_{i}\right)=0
$$

- Two lines

Two lines m, n are skew if and only if $\Omega(m, n)=\left[m_{i}^{\prime}\right]^{\tau}\left(n_{i}\right) \neq 0$. If they are not, first check if $m=n$. If this is not the case they meet in a point $P=m \wedge n$ and their join is a plane $A=m \vee n$. To find A and P take any plane B containing m (take for instance one of the non-zero vectors of the matrix $\left[m_{i j}\right]$; or, if you do not know if these vectors are 0 , take the sum of two or three of them). If $\left(n_{i j}\right)\left[B_{j}\right]=0$ this plane contains n as well and hence $B=A$. Else $\left(n_{i j}\right)\left[B_{j}\right]=P$. Dually: take any point Q on m. If $\left[n_{i j}^{\prime}\right]\left(Q_{j}\right)=0$ this point is on n as well and hence $Q=P$. Else $\left[n_{i j}^{\prime}\right]\left(Q_{j}\right)=A$.
There is no simple symmetrical formula that determines meeting point and joining plane of distinct coplanar lines.

- One line and one plane

$$
m \prec A \Leftrightarrow\left(m_{i j}\right)\left[a_{j}\right]=\mathbf{0}
$$

If $m \nprec A$ then $P=A \wedge m$ is a point and

$$
\left(p_{i}\right)=\left(m_{i j}\right)\left[a_{j}\right]
$$

- Two planes

$$
A=B \Leftrightarrow \exists \mu \in \mathbb{R} \backslash 0:[a]=\mu[b]
$$

If $A \neq B$ then $A \wedge B$ is a line m with

$$
\left[m_{i}^{\prime}\right]=[a] \wedge_{e}[b]
$$

- Three points or three planes

The equation of the plane A through P, Q, R is

$$
\operatorname{det}(A, P, Q, R)=0
$$

The common point P of A, B, C is obtained $\operatorname{from} \operatorname{det}(P, A, B, C)=0$.

1.3 Exercises

1. Let be given the points $P(2: 4:-1: 0)$ and $Q(-2:-1: 1: 1)$, and the planes $A[2:-1: 0: 3]$ and $B[-1: 5: 1: 2]$.
a. Verify that both P and Q are in A as well as in B.
b. Determine the Plücker-matix of both $P \vee Q$ and $A \wedge B$.
c. Determine the Plücker-vector from each of these matrices and show that the lines are equal.
2. Let be given the system of reference $X_{0} \ldots X_{u}, Y_{0} \ldots Y_{u}$ and the line $l(1: 2: 3: 4: 5: 6)$.
a. Determine the points $l \wedge Y_{i}$ and the planes $l \vee X_{i}$ for $i \in\{0,1,2,3\}$.
b. Is the point $P(1: 0: 5: 2)$ on l ? If not, determine $P \vee l$.
c. Is l in the plane $A(3:-3: 1: 4)$? If not, determine the meeting point $l \wedge A$.
3. Let be given the lines $l(-9: 6:-2: 6: 5: 2)$ and $m(2:-3: 1: 2: 0:-1)$. Are they coincident or skew? If not, determine meeting point and joining plane.
4. Show that line $P \vee Q$ meets the $X_{1} X_{3}$-axis.

Answers. 1b.

$$
P \vee Q=\left(\begin{array}{cccc}
0 & 6 & 0 & 2 \\
-6 & 0 & 3 & 4 \\
0 & -3 & 0 & -1 \\
-2 & -4 & 1 & 0
\end{array}\right), A \wedge B=\left[\begin{array}{cccc}
0 & -3 & -12 & 9 \\
3 & 0 & 6 & 0 \\
12 & -6 & 0 & 18 \\
-9 & 0 & -18 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & -1 & -4 & 3 \\
1 & 0 & 2 & 0 \\
4 & -2 & 0 & 6 \\
-3 & 0 & -6 & 0
\end{array}\right]
$$

1c. $(6: 0: 2: 3:-4:-1)=\iota[-1:-4: 3: 2: 0: 6]$
2a. These points and planes can be derived directly from the above matrices.
2 b .

$$
l \vee P=\left(l_{i j}\right)^{\iota}\left(p_{j}\right)=\left[\begin{array}{cccc}
0 & 6 & 5 & 4 \\
-6 & 0 & 3 & -2 \\
-5 & -3 & 0 & 1 \\
-4 & 2 & -1 & 0
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
5 \\
2
\end{array}\right)=\left(\begin{array}{c}
33 \\
5 \\
-3 \\
-9
\end{array}\right)
$$

2c.

$$
l \wedge A=\left(l_{i j}\right)\left[a_{j}\right]=\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
-1 & 0 & 4 & -5 \\
-2 & -4 & 0 & 6 \\
-3 & 5 & -6 & 0
\end{array}\right)\left[\begin{array}{c}
3 \\
-3 \\
1 \\
4
\end{array}\right]=\left(\begin{array}{c}
11 \\
-19 \\
30 \\
-30
\end{array}\right)
$$

3. $l \wedge m=(1:-2: 2:-1), \quad l \vee m=[1: 0: 1: 3]$

2 The parabolic strip

Definition 2.1 Given a line l in real projective space, a parabolic strip is a projective map

$$
f:\langle\emptyset, l\rangle \rightarrow\langle l, \mathbb{P}\rangle \quad \text { or } \quad f:\langle l, \mathbb{P}\rangle \rightarrow\langle\emptyset, l\rangle
$$

l is called the axis or bearer of f.

Figure 3: construction of a parabolic strip

Figure 4: orientation in a parabolic strip

Hence, a parabolic strip maps the points of a line onto the planes through that line, while keeping cross ratios invariant. To put it sloppy: if a point traverses that complete line once, the corresponding plane rotates a half turn around the line.
In figure 3 a standard construction of a parabolic strip is drawn. Start with three pairwise skew lines l, m, n. Take an arbitrary point X on l. The plane $A_{X}=X \vee m$ meets n in a point P_{X}. If we define $f(X)=B_{X}=l \vee P_{X}=l \vee((X \vee m) \wedge n)$ then f is projective, hence a parabolic strip. In figure 4 the construction is repeated for the point Y.

Proposition 2.2 Decomposition of parabolic strips. Given a parabolic strip $f:\langle\emptyset, l\rangle \rightarrow$ $\langle l, \mathbb{P}\rangle$ there exist lines m, n, such that $f(X)=((X \vee m) \wedge n) \vee l$ for each $X \prec l$.

Figure 5: decomposing a parabolic strip

Proof. Take three distinct points P, Q and R on l. Let $A=f(P), B=f(Q)$ and $C=f(R)$, see figure 5. Take an arbitrary line m, skew to l, and let S, T, U be the meeting poinst of m with A, B, C respectively. Observe that the lines $P S, Q T, R U$ are pairwiese skew. Take a third point V on line $T Q$. The plane $V P S$ meets line $R U$ in a point W. Let $n=V W$ and verify that n is skew to both l and m. Define $g(X)=((X \vee m) \wedge n) \vee l$ for $X \prec l$. Then g and f have equal images on the three distinct points P, Q, R of l, hence they are equal in each point of l. \diamond
Since a parabolic strip is a projectivity betwee 1-dimensional spaces, the map is determined by three points and their images. We will denote the strip f by $(P Q R f(P) f(Q) f(R)))$ where P, Q, R are any three distinct points on the axis of f. So the strip of figure 5 is denoted by ($P Q R A B C$).
Observe that if in figure 4 you move point Y to the right, the plane $f(Y)$ turns to the left, it is a left-handed orientation ${ }^{1}$. With different positions of m and n this may change. For instance,

[^0]if you interchange m and n, you will get a right-handed orientation. The rule is as follows. The lines l, m divide the collection of all lines in two parts. Each line of one part can move in that part without crossing either of l, m. If n, n^{\prime} are in the same part, the corresponding strips have the same orientation, otherwise opposite. See section 3 for an exact treatment of 'orientation'.

3 Orientation

Without proof we state that real projective spaces of odd dimension are orientable, those of even dimension not (see also footnote on page 8). So, our 3-dimensional space is orientable. What does that mean?

Intuitively, moving along a line and simultaneously turning a plane about that line in a clockwise sense is called a right-handed orientation, turning counter clockwise is called lefthanded. It is the parabolic strip that does this formally, see figure 6. A parabolic strip is determined by three distinct points on a line and three distinct planes containing that line. So we are looking for a function ω that maps each such 6-tuple $(P Q R A B C)$ onto

Figure 6: a right-handed parabolic strip
one of the numbers 1 and -1 . If p is an even permutation of $A B C$ then $\omega(P Q R p(A B C))$ should have the same sign as $\omega(P Q R A B C)$, and if p is odd they must have opposite signs. Similarly $\omega(q(P Q R) A B C)=\omega(P Q R A B C)$ if q is an even permutation of $P Q R$, and $\omega(q(P Q R) A B C)=-\omega(P Q R A B C)$ if q is odd. In addition, ω should be independent of the choice of the points P, Q, R on l.
We will first fix an initial parabolic strip and assign a positive orientation to it, and then define the orientation of an arbitrary strip relative to the initial one.

Definition 3.1 The initial positive parabolic strip is $g=\left(X_{0} X_{1}\left(X_{0}+X_{1}\right) \quad Y_{2} Y_{3}\left(Y_{2}+Y_{3}\right)\right)$. Its orientation is defined as $\omega(g)=1$.

It is shown in figure 7. Observe that it is a right-handed orientation. But if we interchange X_{0} and X_{1} it becomes left-handed. So we will not use left- and right-handed anymore but only positive and negative with respect to the system of reference, i.e. to the initial positive strip. Observe also that the orientation does not change if we put X_{u} elsewhere on the line through $X_{0}+X_{1}$ and $X_{2}+X_{3}$ (as long as it does not coincide with one of these points). But if we move it such that $X_{0}+X_{1}$ keeps its position but $X_{2}+X_{3}$ moves to the other segment $X_{2} X_{3}$ then the orientation does change.

Figure 7: the initial positive orientation

Let $f:\langle\emptyset, l\rangle \rightarrow\langle l, \mathbb{P}\rangle$ be any parabolic strip, let P, Q, R be distinct points on line l, and $A=f(P), B=f(Q), C=f(R)$, see figure 8 . Let α, β be the (unique) non-zero real numbers

Figure 8: an arbitrary parabolic strip
such that $R=P+\alpha Q$ and $C=A+\beta B$. We will construct a projectivity h that maps $X_{0}, X_{1}, X_{0}+X_{1}, Y_{2}, Y_{3}, Y_{2}+Y_{3}$ on P, Q, R, A, B, C respectively. Let m be any line skew to l and let S, T, U be the meeting points of m with A, B, C respectively. If (M) is the pointwise Plücker-matrix of m then $S=(M) A, T=(M) B$ and $U=(M) A+\beta(M) B=S+\beta T$. Define the points $V=(M) A-\beta(M) B=S-\beta T$ and $W=W_{\lambda}=R+\lambda V$ for any non-zero real number λ. Then P, Q, S, T, W are in general position hence there is a unique projectivity $h=h_{\lambda}$ that maps $X_{0}, X_{1}, X_{2}, X_{3}, X_{u}$ onto P, Q, T, S, W_{λ} respectively. Let $\left(p_{i}\right)$ be the coordinates of P etc. Then the pointmatrix of h equals

$$
\left(\begin{array}{llll}
p_{0} & \alpha q_{0} & -\lambda \beta t_{0} & \lambda s_{0} \\
p_{1} & \alpha q_{1} & -\lambda \beta t_{1} & \lambda s_{1} \\
p_{2} & \alpha q_{2} & -\lambda \beta t_{2} & \lambda s_{2} \\
p_{3} & \alpha q_{3} & -\lambda \beta t_{3} & \lambda s_{3}
\end{array}\right)=(P, \alpha Q,-\beta \lambda T, \lambda S)
$$

Verify that h also maps $X_{0}+X_{1}, X_{2}+X_{3}, X_{2}-X_{3}$ onto R, V, U respectively. Then also $h\left(Y_{2}\right)=h\left(X_{0} \vee X_{1} \vee X_{3}\right)=P \vee Q \vee S=A, h\left(Y_{3}\right)=B$ and $h\left(Y_{2}+Y_{3}\right)=C$. The determinant of h equals $-\alpha \beta \lambda^{2} \operatorname{det}(P Q T S)=\alpha \beta \lambda^{2} \operatorname{det}(P Q S T)$.
In section ?? (proposition ??) we prove that the determinants of $(P Q S T)$ and $(P Q A B)$ have the same sign. So we define:

Definition 3.2 Let $f:\langle\emptyset, l\rangle \rightarrow\langle l, \mathbb{P}\rangle$ be a parabolic strip, let $P, Q, R=P+\alpha Q$ be distinct points on line l, and $A=f(P), B=f(Q), C=f(R)=A+\beta B$. Let m be any line skew to l that meets A, B, C in the points $S=[M] A, T=[M] B$ and $U=S+\beta T$ respectively, where $[M]$ is the planewise matrix of m. Then the orientation of f is defined as

$$
\omega(f)=\frac{\alpha \beta \operatorname{det}(P Q A B)}{|\alpha \beta \operatorname{det}(P Q A B)|}=\frac{\alpha \beta \operatorname{det}(P Q S T)}{|\alpha \beta \operatorname{det}(P Q S T)|} \in\{1,-1\}
$$

Observe first that a matrix $(P Q A B)$ has no meaning in our theory, but its determinant can still be computed. Observe also that interchanging P and Q changes the orientation. And changing the sign of α moves R from one segment of $P Q$ to the other. Similar for interchanging A, B, and for changing the sign of β. That means that ω satisfies the above required conditions of permutation.

Proposition 3.3 If p is an even permutation of $A B C$ then $\omega(P Q R p(A B C))=\omega(P Q R A B C)$. If p is an odd permutation of $A B C$ then $\omega(P Q R p(A B C))=-\omega(P Q R A B C) . \diamond$

For completeness we mention that there is of course a dual formula

$$
\omega(f)=\frac{\alpha \beta \operatorname{det}(E F A B)}{|\alpha \beta \operatorname{det}(P Q A B)|}
$$

where $E=P \vee m$ and $F=Q \vee m$. The reader is invited to derive this formula, but we will not use it.

Does these formula comply with $\omega(g)=1$? Obviously $\left(X_{0} X_{1} Y_{2} Y_{3}\right)$ is the identiy matrix and $\alpha=\beta=1$. But $\left(X_{0} X_{1} X_{3} X_{2}\right)$ has determinant -1 and $\beta=-1$: one has to be careful. The
problem is that projecitve points P and $-P$ are equal, but in algebraic formulae they may have to be treated differently.

Observe also thet $\omega(f)=\operatorname{det}(h) /|\operatorname{det}(h)|$, i.e. $h=h_{\lambda}$ (see above) is order preserving if and only if $\operatorname{det}(h)>0$. As a consequence we have

Proposition 3.4 Let $f_{1}=\left(P_{1} Q_{1} R_{1} A_{1} B_{1} C_{1}\right)$ and $f_{2}=\left(P_{2} Q_{2} R_{2} A_{2} B_{2} C_{2}\right)$ be parabolic strips and let h be any projectivity that maps $P_{1}, \ldots C_{1}$ onto $P_{2}, \ldots C_{2}$ respectively. Then $\omega\left(f_{2}\right)=$ $\omega\left(f_{1}\right) \operatorname{det}(h) /|\operatorname{det}(h)| . \diamond$

We still have to prove that the orientation of f does not depend on the choice of P, Q, R.

Proposition 3.5 Let f be a parabolic strip with axis l, P, Q, R arbitrary distinct points on $l, P^{\prime}, Q^{\prime}, R^{\prime}$ also arbitrary distinct points on $l, A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ their f-images. Then

$$
\frac{\alpha^{\prime} \beta^{\prime} \operatorname{det}\left(P^{\prime} Q^{\prime} A^{\prime} B^{\prime}\right)}{\left|\alpha^{\prime} \beta^{\prime} \operatorname{det}\left(P^{\prime} Q^{\prime} A^{\prime} B^{\prime}\right)\right|}=\frac{\alpha \beta \operatorname{det}(P Q A B)}{|\alpha \beta \operatorname{det}(P Q A B)|}
$$

where again $R=P+\alpha Q$ and $C=A+\beta B$ and similar for $\alpha^{\prime}, \beta^{\prime}$.

Proof. Take as a local system of reference for points on $l P, Q, P+Q$ and for planes $A, B, A+B$. Then f is linear with matrix

$$
f=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

Then $f(P)=\alpha A, f(Q)=\beta B$ and $f(R)=f(P+\alpha Q)=\alpha A+\alpha \beta B=\alpha(A+\beta B)=\alpha C$. Let the local coordinates be $P^{\prime}=\left(p_{0}: p_{1}\right), Q^{\prime}=\left(q_{0}: q_{1}\right)$, then $R^{\prime}=\left(p_{0}+\alpha^{\prime} q_{0}: p_{1}+\alpha^{\prime} q_{1}\right)$. Now $f\left(R^{\prime}\right)=\left(\alpha p_{0}+\alpha \alpha^{\prime} q_{0}: \beta p_{1}+\beta \alpha^{\prime} q_{1}\right)=A^{\prime}+\alpha^{\prime} B^{\prime}$, hence - not surprisingly $-\beta^{\prime}=\alpha^{\prime}$. The ordering with respect to the primed elements uses

$$
\begin{aligned}
&\left(\alpha^{\prime}\right)^{2}\left|P^{\prime} Q^{\prime} A^{\prime} B^{\prime}\right|= \\
&\left(\alpha^{\prime}\right)^{2}\left|\left(p_{0} P+p_{1} Q\right)\left(q_{0} P+q_{1} Q\right)\left(\alpha p_{0} A+\beta p_{1} B\right)\left(\alpha q_{0} A+\beta q_{1} B\right)\right|= \\
&\left(\alpha^{\prime}\right)^{2} \mid\left(p_{0} q_{1}-p_{1} q_{0}\right) P Q \alpha \beta\left(p_{0} q_{1}-p_{1} q_{0}\right) A B= \\
&\left(\alpha^{\prime}\right)^{2} \alpha \beta\left(p_{0} q_{1}-p_{1} q_{0}\right)^{2}|P Q A B|
\end{aligned}
$$

which has the same sign as $\alpha \beta|P Q A B|$. ॰

Proposition 3.6 Let l, m be skew lines and let f_{l} be any parabolic strip with axis l. Then each projective map h that maps l on m defines a parabolic strip $f_{m}=h f_{l} h^{-1}$ on m with the same orientation as f_{l}.

Proof. Observe first that h maps points on l to points on m and similar for planes; and likewise for h^{-1}. Let X be any point of m. Then $Y=h^{-1}(X)$ is a point of l. Nex $f(Y)$ is a plane containing l and $h f(Y)$ a plane containing m. Since det h and det h^{-1} have the same sign $\omega\left(f_{m}\right)=\omega\left(f_{l}\right)$. \diamond

Observe the difference with proposition 3.4.

4 Orientation of linear complexes

Regular linear complexes can be considered to consist of a pencil of parabolic linear congruences. Like parabolic strips, regular linear complexes split into two classes of opposite orientation. First we show that all parabolic strips of a regular linear complex have the same orientation.

Proposition 4.1 If K is a regular linear complex and $m_{1}, m_{2} \in K$. Let f_{1}, f_{2} be the parabolic strips that are the restrictions of n_{K} to the pointranges on m_{1}, m_{2} respectively. Then $\omega\left(f_{1}\right)=$ $\omega\left(f_{2}\right)$.

Proof. We have seen that all linear complexes are similar. So we only need to prove our proposition for one complex. Take $K=\left(k_{i}\right)=(0: 1: 0: 0: 1: 0)=\iota[0: 1: 0: 0: 1: 0]$. So its matrices are

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\iota\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]
$$

Then $P l_{n}(K)=1$ and $\operatorname{det} n_{K}=1 \neq 0$ so K is regular.
Let $m=\left(m_{i}\right)$ be any line of K, then the line condition says $m_{0} m_{5}+m_{1} m_{4}+m_{2} m_{3}=0$, and $n_{K}(m)=m$ implies

$$
\Omega(k, m)=\left[k_{i}\right]^{\tau}\left(m_{i}\right)=m_{1}+m_{4}=0
$$

hence $m_{4}=-m_{1}$. Let the parabolic strip f be the restriction of n_{K} to the point range on m.

- If $m_{3} \neq 0$ then $P\left(m_{1}: m_{3}: 0:-m_{5}\right), Q\left(m_{0}: 0:-m_{3}:-m_{1}\right)$ and $R=P+Q$ are distinct points on m. Now

$$
\begin{aligned}
& A=n_{K}(P)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]\left(\begin{array}{c}
m_{1} \\
m_{3} \\
0 \\
-m_{5}
\end{array}\right)=\left[\begin{array}{c}
0 \\
-m_{5} \\
m_{1} \\
-m_{3}
\end{array}\right], \\
& B=n_{K}(Q)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right]\left(\begin{array}{c}
m_{0} \\
0 \\
-m_{3} \\
-m_{1}
\end{array}\right)=\left[\begin{array}{c}
m_{3} \\
-m_{1} \\
m_{0} \\
0
\end{array}\right]
\end{aligned}
$$

and $C=n_{K}(R)=A+B$. Then

$$
\begin{gathered}
\operatorname{det}(P Q A B)=\left|\begin{array}{cccc}
m_{1} & m_{0} & 0 & m_{3} \\
m_{3} & 0 & m_{5} & -m_{1} \\
0 & -m_{3} & m_{1} & m_{0} \\
-m_{5} & m_{1} & m_{3} & 0
\end{array}\right|= \\
=+m_{1}^{2} m_{3}^{2}+m_{0} m_{1}^{2} m_{5}+m_{1}^{4}+m_{0}^{2} m_{3}^{2}+m_{3}^{4}+m_{1}^{2} m_{3}^{2}+m_{0}^{2} m_{5}^{2}+m_{0} m_{1}^{2} m_{5}+m_{3}^{2} m_{5}^{2}= \\
=+m_{1}^{2} m_{3}^{2}+\left(m_{0} m_{5}+m_{1}^{2}\right)^{2}+m_{0}^{2} m_{3}^{2}+m_{3}^{4}+m_{1}^{2} m_{3}^{2}+m_{3}^{2} m_{5}^{2}>0
\end{gathered}
$$

(since by hypothesis $m_{3} \neq 0$), independent of the values of the m_{i}.

- If $m_{3}=0 \neq m_{1}=-m_{4}$ then take $P\left(0: m_{0}: m_{1}: m_{2}\right)$ and $Q\left(m_{0}: 0: 0:-m_{1}\right)$. Then $|P Q A B|=\left(m_{0}^{2}-m_{2}^{2}\right)^{2}+m_{1}^{4}>0$.
- If $m_{1}=m_{3}=m_{4}=0$ and one of the remaining $m_{i} \neq 0$ it is left as an exercise for the reader to show that $|P Q A B|>0$.

This holds for all lines of K, hence all its parabolic strips have the same orientation. \diamond

Proposition 4.2 If K is a linear complex with null-polarity n_{K} and Plücker-number $p=$ $k_{0} k_{5}+k_{1} k_{4}+k_{2} k_{3}$ then $\omega\left(n_{K}\right)=-p /|p|$.

Let $[K]$ and (K) be the plane- and point-matrix of n_{K} respectively. At least one of the $k_{i} \neq 0$, say $k_{5} \neq 0$. Define the planes $A=n_{K}\left(X_{0}\right)=\left[0:-k_{5}:-k_{4}:-k_{3}\right]$ and let $P=\left(0:-k_{4}: k_{5}: 0\right) \neq X_{0}$ a second point of A. Then the line $m=X_{0} \vee P$ belongs tot the pencil $\left\langle X_{0}, n_{K}\left(X_{0}\right)\right\rangle$ hence to K. Define $B=n_{K}(P)=\left[0: k_{2} k_{5}: k_{2} k_{4}:-k_{1} k_{4}-k_{0} k_{5}\right]$. Now

$$
\begin{aligned}
& \left.\left.\operatorname{det}\left(X_{0} P A B\right)=\left\lvert\, \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -k_{4} & -k_{5} & k_{2} k_{5} \\
0 & k_{5} & -k_{4} & k_{2} k_{4} \\
0 & 0 & -k_{3} & -k_{1} k_{4}-k_{0} k_{5}
\end{array}\right.\right]=-\left\lvert\, \begin{array}{ccc}
-k_{4} & k_{5} & k_{2} k_{5} \\
k_{5} & k_{4} & k_{2} k_{4} \\
0 & k_{3} & -k_{1} k_{4}-k_{0} k_{5}
\end{array}\right.\right]= \\
& \left.\left.k_{4} \left\lvert\, \begin{array}{cc}
k_{4} & k_{2} k_{4} \\
k_{3} & -k_{1} k_{4}-k_{0} k_{5}
\end{array}\right.\right]+k_{5} \left\lvert\, \begin{array}{cc}
k_{5} & k_{2} k_{5} \\
k_{3} & -k_{1} k_{4}-k_{0} k_{5}
\end{array}\right.\right]= \\
& =-k_{4}^{2}\left(+k_{1} k_{4}+k_{0} k_{5}+k_{2} k_{3}\right)-k_{5}^{2}\left(+k_{1} k_{4}+k_{0} k_{5}+k_{2} k_{3}\right)=-p\left(k_{4}^{2}+k_{5}^{2}\right)
\end{aligned}
$$

By definition 3.2, using $\alpha=\beta=1$ again, follows the proposition.
If $k_{5}=0$ then there is another $k_{i} \neq 0$. It is left as an exercise for the reader that again our proposition holds. \diamond

Lou de Boer, May 2021

[^0]: ${ }^{1}$ An exact definition of 'orientation' involves a good deal of Differential Geometry or Homology Theory, see e.g. [?]. In this treatise we will we will handle the subject intuitively.

