1 The theorem of Sylvester

Lou de Boer, October 2023

Theorem 1.1 (J.J. Sylvester, 1814-1897)
Let be given the distinct planes A and B with common line l.
On l are the distinct points P and Q.
Let $g:\langle P, A\rangle \rightarrow\langle Q, B\rangle$ be a projective map with $g(l)=l$.
Let $V_{x}=T^{1}(x, g(x))$ for each $x \in\langle P, A\rangle$ and let $V=\bigcup_{x \neq l} V_{x}$.

- Then there exists one and only one linear complex, K, that contains V.
- This linear complex is regular
- and contains in addition the lines of one parabolic congruence, G, with axis l.
- The restriction of its null-polarity to $\langle P, A\rangle$ equals g.
- No other lines belong to it, i.e. $K=G \cup V$.

Proof. Observe that V_{l} is a special linear complex, hence $V_{l} \not \subset K$.
1.) First we classify the lines in V.

1a.) Let C be any plane neither containig l nor P nor Q.
Define $a=A \wedge C, b=B \wedge C$ and $R=l \wedge C$, see figure 1 .

Figure 1: the pencil in an arbitrary plane C

Let x be a line of the pencil $\langle P, A\rangle$.
Let $X=x \wedge a, y=g(x)$ and $Y=y \wedge b$.
Define $\quad h:\langle\emptyset, a\rangle \rightarrow\langle\emptyset, b\rangle \quad$ by $\quad Y=h(X)=g(X \vee P) \wedge b$ for all $X \prec a$.
Then h is a projectivity, even a perspectivity since $h(R)=R$.
Then there is a point $S \prec C$ such that all lines $X \vee h(X)$ for $X \neq R$ share S, and S is neither on a nor on b.

Let z be any line from pencil $\langle S, C\rangle$ but not $S R$.
Define $X^{\prime}=z \wedge a$ and $Y^{\prime}=z \wedge b$. Then $Y^{\prime}=h\left(X^{\prime}\right)=g\left(X^{\prime} \vee P\right) \wedge b$ and clearly z meets both $P X^{\prime}$ and $g\left(P X^{\prime}\right)$, that is $z \in T^{1}\left(P X^{\prime}, g\left(P X^{\prime}\right)\right)$ hence $z \in V$.
So the pencil $\langle S, C\rangle \backslash S R$ belongs to the set V defined by the theorem.

If u is another line of C belonging to V, then there must be an $x \in\langle P, A\rangle$ such that u meets both x and $g(x)$, but then u must pass S.
So, lines in C not belonging to the pencil $\langle S, C\rangle$ do not belong to V.
1b.) If $C=C_{P}$ does not contain l but does contain P (see left part of figure 2), then $x=C_{P} \wedge A$ is a line of the first pencil, $\langle P, A\rangle$, and we define $y=g(x), Y=S_{P}=y \wedge C_{P}$. Now the entire pencil

Figure 2: special cases $C \succ P$ and $C \succ Q$
$\left\langle S_{P}, C_{P}\right\rangle$ belongs to V.
Similar argument if $C=C_{Q} \succ Q$ but $C_{Q} \nsucc l$ (use $x=h^{-1}(y)$ in the right part of the figure).
Observe also that if in the left part of figure 2 we rotate plane C_{P} about x towards A the pencil $\left\langle S_{P}, C_{P}\right\rangle$ moves towards $\langle Q, A\rangle$, and similarly in the right part of that figure.

1c.) Next trivially the pencils $\langle P, B\rangle$ and $\langle Q, A\rangle$ are subsets of V.
But any other plane through l contains no lines of V exept l itself. For if a line m of such a plane should be in V it must meet a line of each pencil, hence contain P as well as Q, hence being l.
Summary: The following sets are subsets of $V:\langle S, C\rangle \backslash S R,\left\langle S_{P}, C_{P}\right\rangle,\left\langle S_{Q}, C_{Q}\right\rangle,\langle P, B\rangle$ and $\langle Q, A\rangle$, for all above defined C, C_{P}, C_{Q}.
2.) The complex. In figure 3 you see again the double pencil with two lines x, x^{\prime} from $\langle P, A\rangle$ and their two images $y=g(x)$ and $y^{\prime}=g\left(x^{\prime}\right)$. An extra line through P and in B meets the lines y, y^{\prime} in the points Y, Y^{\prime} respectively.
One extra line through Q in A meets x in X, and a second one meets x^{\prime} in X^{\prime}.
With two extra lines $X Y$ and $X^{\prime} Y^{\prime}$ a skew pentagon ($Q X, X Y, Y Y^{\prime}, Y^{\prime} X^{\prime}, X^{\prime} Q$) appears, which uniquely determines a regular linear complex K with null-polarity n_{K}.
3.) K contains the 'almost pencils'. Line l belongs to the pencil $\langle Q, A\rangle$ which is part of K because $Q X$ and $Q X^{\prime}$ belong to K.
The four independent lines $P Y, X Y, Q X$ and l belong to K, hence the collection of dependent lines of them, viz. the hyperbolic congruence $T^{1}(x, y)$, is part of K too.
For similar reasons $T^{1}\left(x^{\prime}, y^{\prime}\right) \subset K$.
Let S be any point neither in A nor in B, see figure 4. Let t_{1} be the unique transversal from S to x and y. This line belongs to $T^{1}(x, y)$ hence to K.
The unique transversal t_{2} from S to x^{\prime} and y^{\prime} belongs to $T^{1}\left(x^{\prime}, y^{\prime}\right)$, hence also to K.
Define $C=t_{1} \vee t_{2}$ and $R=C \wedge l$.
Now the entire pencil $\langle S, C\rangle$ belongs to K, but, exept $S R$, this pencil belongs to V.
If S lies in A but not on l the two transversals coincide to $S Q$ which is the case of $\left\langle S_{Q}, C_{Q}\right\rangle$ above

Figure 3: construction of the complex

Figure 4: the parabolic congruence
for each $C \succ S Q$.
Similar for $S \prec B, S \nprec l$.
This covers all points S exept those on l, hence all 'almost pencils' of V.

4.) The congruence.

Consider the lines $P Y$ and $Q X$ from figure 3 and line $R S$ from figure 4.
They all belong to K and hence the regulus $T^{2}(P Y, Q X, R S)$ is part of K.
Define $D=l \vee S$, then $f_{l}=(P Q R, B A D)$ is a parabolic strip.
Since $R=l \wedge C$ we have $n_{K}(R)=l \vee S=D$, so the restriction of n_{K} tot the pointrange $\langle\emptyset, l\rangle$ is precisely f_{l}.
Observe that for each $S \nprec l$ the entire pencil $\langle R, l \vee S\rangle$ is part of K, so the parabolic congruence G defined by f_{l} is subset of K.
This congruence also contains all missing lines of the 'almost pencils', hence $V \subset K$.
Since g and the restriction of n_{K} tot $\langle P, A\rangle$ act the same on l, x, x^{\prime} they are identical.

5. K has no other lines

Suppose $m \in K$. If m meets l in some point R then it must belong to G, otherwise K would contain a bundle of lines with center R. If m is skew to l and meets A in X and B in Y, then - since $n_{K}(m)=m-g(P X)=n_{K}(P X)=Q Y$ and hence $m \in V$. Evidently $K \subset G \cup V$. \diamond

See also theorem 21 of [VeblenY1910] from which the essence of this proof is taken.
Exercises a.) Let in the previous configuration D be any plane containing l. Define $R=f_{l}^{-1}(D)$ and let C be any plane containing R. Investigate how the pencil $\langle S, R\rangle$ changes with C moving about R; also in the cases $D=A$ and $D=B$.
b.) If in the theorem of Sylvester either $P=Q$ or $A=B$ then K is a special complex with axis l. Prove this. What happens when $A=B$ and $P=Q$? \diamond

References

[Stoss1999] Hanns-Jörg Stoß: Einführung in die synthetische Liniengeometrie, Dornach 1999
[VeblenY1910] Oswald Veblen and John Wesley Young: Projective Geometry, two volumes; Ginn and Company, New York 1910
[Ziegler2012] Renatus Ziegler: Projective Geometry and Line Geometry; Dornach 2012

