
1 The theorem of Sylvester

Lou de Boer, October 2023

Theorem 1.1 (J.J. Sylvester, 1814-1897)
Let be given the distinct planes A and B with common line l.
On l are the distinct points P and Q.
Let g : ⟨P,A⟩ → ⟨Q,B⟩ be a projective map with g(l) = l.
Let Vx = T 1(x, g(x)) for each x ∈ ⟨P,A⟩ and let V =

⋃
x ̸=l Vx.

- Then there exists one and only one linear complex, K, that contains V .
- This linear complex is regular
- and contains in addition the lines of one parabolic congruence, G, with axis l.
- The restriction of its null-polarity to ⟨P,A⟩ equals g.
- No other lines belong to it, i.e. K = G ∪ V .

Proof. Observe that Vl is a special linear complex, hence Vl ̸⊂ K.
1.) First we classify the lines in V .
1a.) Let C be any plane neither containig l nor P nor Q.
Define a = A ∧ C, b = B ∧ C and R = l ∧ C, see figure 1.

Figure 1: the pencil in an arbitrary plane C

Let x be a line of the pencil ⟨P,A⟩.
Let X = x ∧ a, y = g(x) and Y = y ∧ b.
Define h : ⟨∅, a⟩ → ⟨∅, b⟩ by Y = h(X) = g(X ∨ P ) ∧ b for all X ≺ a.
Then h is a projectivity, even a perspectivity since h(R) = R.
Then there is a point S ≺ C such that all lines X ∨ h(X) for X ̸= R share S, and S is neither on a
nor on b.

Let z be any line from pencil ⟨S,C⟩ but not SR.
Define X ′ = z ∧ a and Y ′ = z ∧ b. Then Y ′ = h(X ′) = g(X ′ ∨ P ) ∧ b and clearly z meets both PX ′

and g(PX ′), that is z ∈ T 1(PX ′, g(PX ′)) hence z ∈ V .
So the pencil ⟨S,C⟩ \ SR belongs to the set V defined by the theorem.
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If u is another line of C belonging to V , then there must be an x ∈ ⟨P,A⟩ such that u meets both
x and g(x), but then u must pass S.
So, lines in C not belonging to the pencil ⟨S,C⟩ do not belong to V .

1b.) If C = CP does not contain l but does contain P (see left part of figure 2), then x = CP ∧A is
a line of the first pencil, ⟨P,A⟩, and we define y = g(x), Y = SP = y ∧ CP . Now the entire pencil

Figure 2: special cases C ≻ P and C ≻ Q

⟨SP , CP ⟩ belongs to V .
Similar argument if C = CQ ≻ Q but CQ ̸≻ l (use x = h−1(y) in the right part of the figure).
Observe also that if in the left part of figure 2 we rotate plane CP about x towards A the pencil
⟨SP , CP ⟩ moves towards ⟨Q,A⟩, and similarly in the right part of that figure.

1c.) Next trivially the pencils ⟨P,B⟩ and ⟨Q,A⟩ are subsets of V .
But any other plane through l contains no lines of V exept l itself. For if a line m of such a plane
should be in V it must meet a line of each pencil, hence contain P as well as Q, hence being l.

Summary: The following sets are subsets of V : ⟨S,C⟩\SR, ⟨SP , CP ⟩, ⟨SQ, CQ⟩, ⟨P,B⟩ and ⟨Q,A⟩,
for all above defined C,CP , CQ.

2.) The complex. In figure 3 you see again the double pencil with two lines x, x′ from ⟨P,A⟩ and
their two images y = g(x) and y′ = g(x′). An extra line through P and in B meets the lines y, y′ in
the points Y, Y ′ respectively.
One extra line through Q in A meets x in X, and a second one meets x′ in X ′.
With two extra lines XY and X ′Y ′ a skew pentagon (QX,XY, Y Y ′, Y ′X ′, X ′Q) appears, which
uniquely determines a regular linear complex K with null-polarity nK .

3.) K contains the ‘almost pencils’. Line l belongs to the pencil ⟨Q,A⟩ which is part of K
because QX and QX ′ belong to K.
The four independent lines PY , XY , QX and l belong to K, hence the collection of dependent lines
of them, viz. the hyperbolic congruence T 1(x, y), is part of K too.
For similar reasons T 1(x′, y′) ⊂ K.
Let S be any point neither in A nor in B, see figure 4. Let t1 be the unique transversal from S to x
and y. This line belongs to T 1(x, y) hence to K.
The unique transversal t2 from S to x′ and y′ belongs to T 1(x′, y′), hence also to K.
Define C = t1 ∨ t2 and R = C ∧ l.
Now the entire pencil ⟨S,C⟩ belongs to K, but, exept SR, this pencil belongs to V .
If S lies in A but not on l the two transversals coincide to SQ which is the case of ⟨SQ, CQ⟩ above
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Figure 3: construction of the complex

Figure 4: the parabolic congruence

for each C ≻ SQ.
Similar for S ≺ B, S ̸≺ l.
This covers all points S exept those on l, hence all ‘almost pencils’ of V .

4.) The congruence.
Consider the lines PY and QX from figure 3 and line RS from figure 4.
They all belong to K and hence the regulus T 2(PY,QX,RS) is part of K.
Define D = l ∨ S, then fl = (PQR, BAD) is a parabolic strip.
Since R = l ∧ C we have nK(R) = l ∨ S = D, so the restriction of nK tot the pointrange ⟨∅, l⟩ is
precisely fl.
Observe that for each S ̸≺ l the entire pencil ⟨R, l ∨ S⟩ is part of K, so the parabolic congruence G
defined by fl is subset of K.
This congruence also contains all missing lines of the ‘almost pencils’, hence V ⊂ K.
Since g and the restriction of nK tot ⟨P,A⟩ act the same on l, x, x′ they are identical.
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5. K has no other lines

Suppose m ∈ K. If m meets l in some point R then it must belong to G, otherwise K would contain

a bundle of lines with center R. If m is skew to l and meets A in X and B in Y , then – since

nK(m) = m – g(PX) = nK(PX) = QY and hence m ∈ V . Evidently K ⊂ G ∪ V . ⋄

See also theorem 21 of [VeblenY1910] from which the essence of this proof is taken.

Exercises a.) Let in the previous configuration D be any plane containing l. Define
R = f−1

l (D) and let C be any plane containing R. Investigate how the pencil ⟨S,R⟩ changes
with C moving about R; also in the cases D = A and D = B.
b.) If in the theorem of Sylvester either P = Q or A = B then K is a special complex with
axis l. Prove this. What happens when A = B and P = Q? ⋄
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