1 The theorem of Sylvester

Lou de Boer, October 2023

Theorem 1.1 (J.J. Sylvester, 1814-1897)

Let be given the distinct planes A and B with common line l.

On l are the distinct points P and Q.

Let $g: \langle P, A \rangle \to \langle Q, B \rangle$ be a projective map with g(l) = l.

Let $V_x = T^1(x, g(x))$ for each $x \in \langle P, A \rangle$ and let $V = \bigcup_{x \neq l} V_x$.

- Then there exists one and only one linear complex, K, that contains V.
- This linear complex is regular
- and contains in addition the lines of one parabolic congruence, G, with axis l.
- The restriction of its null-polarity to $\langle P, A \rangle$ equals g.
- No other lines belong to it, i.e. $K = G \cup V$.

Proof. Observe that V_l is a special linear complex, hence $V_l \not\subset K$.

1.) First we classify the lines in V.

1a.) Let C be any plane neither containing l nor P nor Q.

Define $a = A \wedge C$, $b = B \wedge C$ and $R = l \wedge C$, see figure 1.

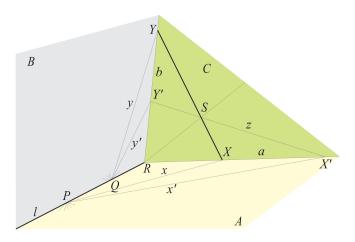


Figure 1: the pencil in an arbitrary plane C

Let x be a line of the pencil $\langle P, A \rangle$.

Let $X = x \wedge a$, y = g(x) and $Y = y \wedge b$.

Define $h: \langle \emptyset, a \rangle \to \langle \emptyset, b \rangle$ by $Y = h(X) = g(X \vee P) \wedge b$ for all $X \prec a$.

Then h is a projectivity, even a perspectivity since h(R) = R.

Then there is a point $S \prec C$ such that all lines $X \lor h(X)$ for $X \neq R$ share S, and S is neither on a nor on b.

Let z be any line from pencil $\langle S, C \rangle$ but not SR.

Define $X' = z \wedge a$ and $Y' = z \wedge b$. Then $Y' = h(X') = g(X' \vee P) \wedge b$ and clearly z meets both PX' and g(PX'), that is $z \in T^1(PX', g(PX'))$ hence $z \in V$.

So the pencil $\langle S, C \rangle \setminus SR$ belongs to the set V defined by the theorem.

If u is another line of C belonging to V, then there must be an $x \in \langle P, A \rangle$ such that u meets both x and g(x), but then u must pass S.

So, lines in C not belonging to the pencil $\langle S, C \rangle$ do not belong to V.

1b.) If $C = C_P$ does not contain l but does contain P (see left part of figure 2), then $x = C_P \wedge A$ is a line of the first pencil, $\langle P, A \rangle$, and we define y = g(x), $Y = S_P = y \wedge C_P$. Now the entire pencil

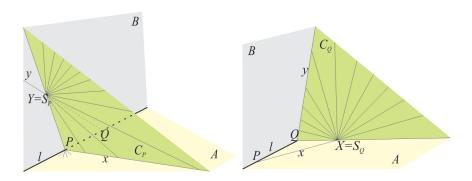


Figure 2: special cases $C \succ P$ and $C \succ Q$

 $\langle S_P, C_P \rangle$ belongs to V.

Similar argument if $C = C_Q \succ Q$ but $C_Q \not\succ l$ (use $x = h^{-1}(y)$ in the right part of the figure).

Observe also that if in the left part of figure 2 we rotate plane C_P about x towards A the pencil $\langle S_P, C_P \rangle$ moves towards $\langle Q, A \rangle$, and similarly in the right part of that figure.

1c.) Next trivially the pencils $\langle P, B \rangle$ and $\langle Q, A \rangle$ are subsets of V.

But any other plane through l contains no lines of V exept l itself. For if a line m of such a plane should be in V it must meet a line of each pencil, hence contain P as well as Q, hence being l.

Summary: The following sets are subsets of $V: \langle S, C \rangle \backslash SR, \langle S_P, C_P \rangle, \langle S_Q, C_Q \rangle, \langle P, B \rangle$ and $\langle Q, A \rangle$, for all above defined C, C_P, C_Q .

2.) The complex. In figure 3 you see again the double pencil with two lines x, x' from $\langle P, A \rangle$ and their two images y = g(x) and y' = g(x'). An extra line through P and in B meets the lines y, y' in the points Y, Y' respectively.

One extra line through Q in A meets x in X, and a second one meets x' in X'.

With two extra lines XY and X'Y' a skew pentagon (QX, XY, YY', Y'X', X'Q) appears, which uniquely determines a regular linear complex K with null-polarity n_K .

3.) K contains the 'almost pencils'. Line l belongs to the pencil $\langle Q, A \rangle$ which is part of K because QX and QX' belong to K.

The four independent lines PY, XY, QX and l belong to K, hence the collection of dependent lines of them, viz. the hyperbolic congruence $T^1(x, y)$, is part of K too.

For similar reasons $T^1(x', y') \subset K$.

Let S be any point neither in A nor in B, see figure 4. Let t_1 be the unique transversal from S to x and y. This line belongs to $T^1(x, y)$ hence to K.

The unique transversal t_2 from S to x' and y' belongs to $T^1(x', y')$, hence also to K.

Define $C = t_1 \vee t_2$ and $R = C \wedge l$.

Now the entire pencil $\langle S, C \rangle$ belongs to K, but, exept SR, this pencil belongs to V.

If S lies in A but not on l the two transversals coincide to SQ which is the case of $\langle S_Q, C_Q \rangle$ above

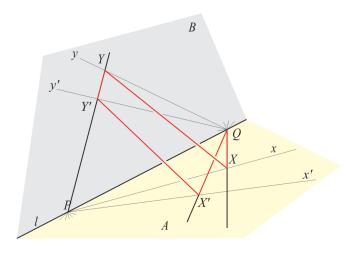


Figure 3: construction of the complex

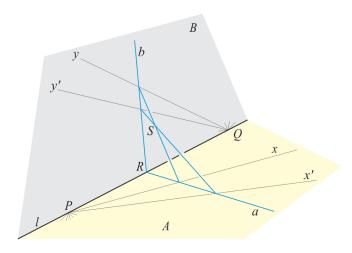


Figure 4: the parabolic congruence

for each $C \succ SQ$.

Similar for $S \prec B$, $S \not\prec l$.

This covers all points S exept those on l, hence all 'almost pencils' of V.

4.) The congruence.

Consider the lines PY and QX from figure 3 and line RS from figure 4.

They all belong to K and hence the regulus $T^2(PY,QX,RS)$ is part of K.

Define $D = l \vee S$, then $f_l = (PQR, BAD)$ is a parabolic strip.

Since $R = l \wedge C$ we have $n_K(R) = l \vee S = D$, so the restriction of n_K tot the pointrange $\langle \emptyset, l \rangle$ is precisely f_l .

Observe that for each $S \not\prec l$ the entire pencil $\langle R, l \vee S \rangle$ is part of K, so the parabolic congruence G defined by f_l is subset of K.

This congruence also contains all missing lines of the 'almost pencils', hence $V \subset K$.

Since g and the restriction of n_K tot $\langle P, A \rangle$ act the same on l, x, x' they are identical.

5. K has no other lines

Suppose $m \in K$. If m meets l in some point R then it must belong to G, otherwise K would contain a bundle of lines with center R. If m is skew to l and meets A in X and B in Y, then – since $n_K(m) = m - g(PX) = n_K(PX) = QY$ and hence $m \in V$. Evidently $K \subset G \cup V$. \diamond

See also theorem 21 of [VeblenY1910] from which the essence of this proof is taken.

Exercises a.) Let in the previous configuration D be any plane containing l. Define $R = f_l^{-1}(D)$ and let C be any plane containing R. Investigate how the pencil $\langle S, R \rangle$ changes with C moving about R; also in the cases D = A and D = B.

b.) If in the theorem of Sylvester either P = Q or A = B then K is a special complex with axis l. Prove this. What happens when A = B and P = Q? \diamond

References

[Stoss1999] Hanns-Jörg Stoß: Einführung in die synthetische Liniengeometrie, Dornach 1999
[VeblenY1910] Oswald Veblen and John Wesley Young: Projective Geometry, two volumes; Ginn and Company, New York 1910
[Ziegler2012] Renatus Ziegler: Projective Geometry and Line Geometry; Dornach 2012